Journal of Clinical and Diagnostic Research, ISSN - 0973 - 709X

Users Online : 53294

AbstractConclusionAcknowledgementReferencesDOI and Others
Article in PDF How to Cite Citation Manager Readers' Comments (0) Audio Visual Article Statistics Link to PUBMED Print this Article Send to a Friend
Advertisers Access Statistics Resources

Dr Mohan Z Mani

"Thank you very much for having published my article in record time.I would like to compliment you and your entire staff for your promptness, courtesy, and willingness to be customer friendly, which is quite unusual.I was given your reference by a colleague in pathology,and was able to directly phone your editorial office for clarifications.I would particularly like to thank the publication managers and the Assistant Editor who were following up my article. I would also like to thank you for adjusting the money I paid initially into payment for my modified article,and refunding the balance.
I wish all success to your journal and look forward to sending you any suitable similar article in future"



Dr Mohan Z Mani,
Professor & Head,
Department of Dermatolgy,
Believers Church Medical College,
Thiruvalla, Kerala
On Sep 2018




Prof. Somashekhar Nimbalkar

"Over the last few years, we have published our research regularly in Journal of Clinical and Diagnostic Research. Having published in more than 20 high impact journals over the last five years including several high impact ones and reviewing articles for even more journals across my fields of interest, we value our published work in JCDR for their high standards in publishing scientific articles. The ease of submission, the rapid reviews in under a month, the high quality of their reviewers and keen attention to the final process of proofs and publication, ensure that there are no mistakes in the final article. We have been asked clarifications on several occasions and have been happy to provide them and it exemplifies the commitment to quality of the team at JCDR."



Prof. Somashekhar Nimbalkar
Head, Department of Pediatrics, Pramukhswami Medical College, Karamsad
Chairman, Research Group, Charutar Arogya Mandal, Karamsad
National Joint Coordinator - Advanced IAP NNF NRP Program
Ex-Member, Governing Body, National Neonatology Forum, New Delhi
Ex-President - National Neonatology Forum Gujarat State Chapter
Department of Pediatrics, Pramukhswami Medical College, Karamsad, Anand, Gujarat.
On Sep 2018




Dr. Kalyani R

"Journal of Clinical and Diagnostic Research is at present a well-known Indian originated scientific journal which started with a humble beginning. I have been associated with this journal since many years. I appreciate the Editor, Dr. Hemant Jain, for his constant effort in bringing up this journal to the present status right from the scratch. The journal is multidisciplinary. It encourages in publishing the scientific articles from postgraduates and also the beginners who start their career. At the same time the journal also caters for the high quality articles from specialty and super-specialty researchers. Hence it provides a platform for the scientist and researchers to publish. The other aspect of it is, the readers get the information regarding the most recent developments in science which can be used for teaching, research, treating patients and to some extent take preventive measures against certain diseases. The journal is contributing immensely to the society at national and international level."



Dr Kalyani R
Professor and Head
Department of Pathology
Sri Devaraj Urs Medical College
Sri Devaraj Urs Academy of Higher Education and Research , Kolar, Karnataka
On Sep 2018




Dr. Saumya Navit

"As a peer-reviewed journal, the Journal of Clinical and Diagnostic Research provides an opportunity to researchers, scientists and budding professionals to explore the developments in the field of medicine and dentistry and their varied specialities, thus extending our view on biological diversities of living species in relation to medicine.
Knowledge is treasure of a wise man. The free access of this journal provides an immense scope of learning for the both the old and the young in field of medicine and dentistry as well. The multidisciplinary nature of the journal makes it a better platform to absorb all that is being researched and developed. The publication process is systematic and professional. Online submission, publication and peer reviewing makes it a user-friendly journal.
As an experienced dentist and an academician, I proudly recommend this journal to the dental fraternity as a good quality open access platform for rapid communication of their cutting-edge research progress and discovery.
I wish JCDR a great success and I hope that journal will soar higher with the passing time."



Dr Saumya Navit
Professor and Head
Department of Pediatric Dentistry
Saraswati Dental College
Lucknow
On Sep 2018




Dr. Arunava Biswas

"My sincere attachment with JCDR as an author as well as reviewer is a learning experience . Their systematic approach in publication of article in various categories is really praiseworthy.
Their prompt and timely response to review's query and the manner in which they have set the reviewing process helps in extracting the best possible scientific writings for publication.
It's a honour and pride to be a part of the JCDR team. My very best wishes to JCDR and hope it will sparkle up above the sky as a high indexed journal in near future."



Dr. Arunava Biswas
MD, DM (Clinical Pharmacology)
Assistant Professor
Department of Pharmacology
Calcutta National Medical College & Hospital , Kolkata




Dr. C.S. Ramesh Babu
" Journal of Clinical and Diagnostic Research (JCDR) is a multi-specialty medical and dental journal publishing high quality research articles in almost all branches of medicine. The quality of printing of figures and tables is excellent and comparable to any International journal. An added advantage is nominal publication charges and monthly issue of the journal and more chances of an article being accepted for publication. Moreover being a multi-specialty journal an article concerning a particular specialty has a wider reach of readers of other related specialties also. As an author and reviewer for several years I find this Journal most suitable and highly recommend this Journal."
Best regards,
C.S. Ramesh Babu,
Associate Professor of Anatomy,
Muzaffarnagar Medical College,
Muzaffarnagar.
On Aug 2018




Dr. Arundhathi. S
"Journal of Clinical and Diagnostic Research (JCDR) is a reputed peer reviewed journal and is constantly involved in publishing high quality research articles related to medicine. Its been a great pleasure to be associated with this esteemed journal as a reviewer and as an author for a couple of years. The editorial board consists of many dedicated and reputed experts as its members and they are doing an appreciable work in guiding budding researchers. JCDR is doing a commendable job in scientific research by promoting excellent quality research & review articles and case reports & series. The reviewers provide appropriate suggestions that improve the quality of articles. I strongly recommend my fraternity to encourage JCDR by contributing their valuable research work in this widely accepted, user friendly journal. I hope my collaboration with JCDR will continue for a long time".



Dr. Arundhathi. S
MBBS, MD (Pathology),
Sanjay Gandhi institute of trauma and orthopedics,
Bengaluru.
On Aug 2018




Dr. Mamta Gupta,
"It gives me great pleasure to be associated with JCDR, since last 2-3 years. Since then I have authored, co-authored and reviewed about 25 articles in JCDR. I thank JCDR for giving me an opportunity to improve my own skills as an author and a reviewer.
It 's a multispecialty journal, publishing high quality articles. It gives a platform to the authors to publish their research work which can be available for everyone across the globe to read. The best thing about JCDR is that the full articles of all medical specialties are available as pdf/html for reading free of cost or without institutional subscription, which is not there for other journals. For those who have problem in writing manuscript or do statistical work, JCDR comes for their rescue.
The journal has a monthly publication and the articles are published quite fast. In time compared to other journals. The on-line first publication is also a great advantage and facility to review one's own articles before going to print. The response to any query and permission if required, is quite fast; this is quite commendable. I have a very good experience about seeking quick permission for quoting a photograph (Fig.) from a JCDR article for my chapter authored in an E book. I never thought it would be so easy. No hassles.
Reviewing articles is no less a pain staking process and requires in depth perception, knowledge about the topic for review. It requires time and concentration, yet I enjoy doing it. The JCDR website especially for the reviewers is quite user friendly. My suggestions for improving the journal is, more strict review process, so that only high quality articles are published. I find a a good number of articles in Obst. Gynae, hence, a new journal for this specialty titled JCDR-OG can be started. May be a bimonthly or quarterly publication to begin with. Only selected articles should find a place in it.
An yearly reward for the best article authored can also incentivize the authors. Though the process of finding the best article will be not be very easy. I do not know how reviewing process can be improved. If an article is being reviewed by two reviewers, then opinion of one can be communicated to the other or the final opinion of the editor can be communicated to the reviewer if requested for. This will help ones reviewing skills.
My best wishes to Dr. Hemant Jain and all the editorial staff of JCDR for their untiring efforts to bring out this journal. I strongly recommend medical fraternity to publish their valuable research work in this esteemed journal, JCDR".



Dr. Mamta Gupta
Consultant
(Ex HOD Obs &Gynae, Hindu Rao Hospital and associated NDMC Medical College, Delhi)
Aug 2018




Dr. Rajendra Kumar Ghritlaharey

"I wish to thank Dr. Hemant Jain, Editor-in-Chief Journal of Clinical and Diagnostic Research (JCDR), for asking me to write up few words.
Writing is the representation of language in a textual medium i e; into the words and sentences on paper. Quality medical manuscript writing in particular, demands not only a high-quality research, but also requires accurate and concise communication of findings and conclusions, with adherence to particular journal guidelines. In medical field whether working in teaching, private, or in corporate institution, everyone wants to excel in his / her own field and get recognised by making manuscripts publication.


Authors are the souls of any journal, and deserve much respect. To publish a journal manuscripts are needed from authors. Authors have a great responsibility for producing facts of their work in terms of number and results truthfully and an individual honesty is expected from authors in this regards. Both ways its true "No authors-No manuscripts-No journals" and "No journalsNo manuscriptsNo authors". Reviewing a manuscript is also a very responsible and important task of any peer-reviewed journal and to be taken seriously. It needs knowledge on the subject, sincerity, honesty and determination. Although the process of reviewing a manuscript is a time consuming task butit is expected to give one's best remarks within the time frame of the journal.
Salient features of the JCDR: It is a biomedical, multidisciplinary (including all medical and dental specialities), e-journal, with wide scope and extensive author support. At the same time, a free text of manuscript is available in HTML and PDF format. There is fast growing authorship and readership with JCDR as this can be judged by the number of articles published in it i e; in Feb 2007 of its first issue, it contained 5 articles only, and now in its recent volume published in April 2011, it contained 67 manuscripts. This e-journal is fulfilling the commitments and objectives sincerely, (as stated by Editor-in-chief in his preface to first edition) i e; to encourage physicians through the internet, especially from the developing countries who witness a spectrum of disease and acquire a wealth of knowledge to publish their experiences to benefit the medical community in patients care. I also feel that many of us have work of substance, newer ideas, adequate clinical materials but poor in medical writing and hesitation to submit the work and need help. JCDR provides authors help in this regards.
Timely publication of journal: Publication of manuscripts and bringing out the issue in time is one of the positive aspects of JCDR and is possible with strong support team in terms of peer reviewers, proof reading, language check, computer operators, etc. This is one of the great reasons for authors to submit their work with JCDR. Another best part of JCDR is "Online first Publications" facilities available for the authors. This facility not only provides the prompt publications of the manuscripts but at the same time also early availability of the manuscripts for the readers.
Indexation and online availability: Indexation transforms the journal in some sense from its local ownership to the worldwide professional community and to the public.JCDR is indexed with Embase & EMbiology, Google Scholar, Index Copernicus, Chemical Abstracts Service, Journal seek Database, Indian Science Abstracts, to name few of them. Manuscriptspublished in JCDR are available on major search engines ie; google, yahoo, msn.
In the era of fast growing newer technologies, and in computer and internet friendly environment the manuscripts preparation, submission, review, revision, etc and all can be done and checked with a click from all corer of the world, at any time. Of course there is always a scope for improvement in every field and none is perfect. To progress, one needs to identify the areas of one's weakness and to strengthen them.
It is well said that "happy beginning is half done" and it fits perfectly with JCDR. It has grown considerably and I feel it has already grown up from its infancy to adolescence, achieving the status of standard online e-journal form Indian continent since its inception in Feb 2007. This had been made possible due to the efforts and the hard work put in it. The way the JCDR is improving with every new volume, with good quality original manuscripts, makes it a quality journal for readers. I must thank and congratulate Dr Hemant Jain, Editor-in-Chief JCDR and his team for their sincere efforts, dedication, and determination for making JCDR a fast growing journal.
Every one of us: authors, reviewers, editors, and publisher are responsible for enhancing the stature of the journal. I wish for a great success for JCDR."



Thanking you
With sincere regards
Dr. Rajendra Kumar Ghritlaharey, M.S., M. Ch., FAIS
Associate Professor,
Department of Paediatric Surgery, Gandhi Medical College & Associated
Kamla Nehru & Hamidia Hospitals Bhopal, Madhya Pradesh 462 001 (India)
E-mail: drrajendrak1@rediffmail.com
On May 11,2011




Dr. Shankar P.R.

"On looking back through my Gmail archives after being requested by the journal to write a short editorial about my experiences of publishing with the Journal of Clinical and Diagnostic Research (JCDR), I came across an e-mail from Dr. Hemant Jain, Editor, in March 2007, which introduced the new electronic journal. The main features of the journal which were outlined in the e-mail were extensive author support, cash rewards, the peer review process, and other salient features of the journal.
Over a span of over four years, we (I and my colleagues) have published around 25 articles in the journal. In this editorial, I plan to briefly discuss my experiences of publishing with JCDR and the strengths of the journal and to finally address the areas for improvement.
My experiences of publishing with JCDR: Overall, my experiences of publishing withJCDR have been positive. The best point about the journal is that it responds to queries from the author. This may seem to be simple and not too much to ask for, but unfortunately, many journals in the subcontinent and from many developing countries do not respond or they respond with a long delay to the queries from the authors 1. The reasons could be many, including lack of optimal secretarial and other support. Another problem with many journals is the slowness of the review process. Editorial processing and peer review can take anywhere between a year to two years with some journals. Also, some journals do not keep the contributors informed about the progress of the review process. Due to the long review process, the articles can lose their relevance and topicality. A major benefit with JCDR is the timeliness and promptness of its response. In Dr Jain's e-mail which was sent to me in 2007, before the introduction of the Pre-publishing system, he had stated that he had received my submission and that he would get back to me within seven days and he did!
Most of the manuscripts are published within 3 to 4 months of their submission if they are found to be suitable after the review process. JCDR is published bimonthly and the accepted articles were usually published in the next issue. Recently, due to the increased volume of the submissions, the review process has become slower and it ?? Section can take from 4 to 6 months for the articles to be reviewed. The journal has an extensive author support system and it has recently introduced a paid expedited review process. The journal also mentions the average time for processing the manuscript under different submission systems - regular submission and expedited review.
Strengths of the journal: The journal has an online first facility in which the accepted manuscripts may be published on the website before being included in a regular issue of the journal. This cuts down the time between their acceptance and the publication. The journal is indexed in many databases, though not in PubMed. The editorial board should now take steps to index the journal in PubMed. The journal has a system of notifying readers through e-mail when a new issue is released. Also, the articles are available in both the HTML and the PDF formats. I especially like the new and colorful page format of the journal. Also, the access statistics of the articles are available. The prepublication and the manuscript tracking system are also helpful for the authors.
Areas for improvement: In certain cases, I felt that the peer review process of the manuscripts was not up to international standards and that it should be strengthened. Also, the number of manuscripts in an issue is high and it may be difficult for readers to go through all of them. The journal can consider tightening of the peer review process and increasing the quality standards for the acceptance of the manuscripts. I faced occasional problems with the online manuscript submission (Pre-publishing) system, which have to be addressed.
Overall, the publishing process with JCDR has been smooth, quick and relatively hassle free and I can recommend other authors to consider the journal as an outlet for their work."



Dr. P. Ravi Shankar
KIST Medical College, P.O. Box 14142, Kathmandu, Nepal.
E-mail: ravi.dr.shankar@gmail.com
On April 2011
Anuradha

Dear team JCDR, I would like to thank you for the very professional and polite service provided by everyone at JCDR. While i have been in the field of writing and editing for sometime, this has been my first attempt in publishing a scientific paper.Thank you for hand-holding me through the process.


Dr. Anuradha
E-mail: anuradha2nittur@gmail.com
On Jan 2020

Important Notice

Reviews
Year : 2024 | Month : February | Volume : 18 | Issue : 2 | Page : DE06 - DE13 Full Version

Pathogenicity and Antibiotic Resistance of Pseudomonas aeruginosa: A Comprehensive Review


Published: February 1, 2024 | DOI: https://doi.org/10.7860/JCDR/2024/67116.19060
Nadeem Ahmad, Areena Hoda Siddiqui, Meenakshi Sharma, Amita Arya

1. PhD Scholar, Department of Microbiology, Integral Institute of Medical Sciences and Research, Lucknow, Uttar Pradesh, India. 2. Professor, Department of Microbiology, Integral Institute of Medical Sciences and Research, Lucknow, Uttar Pradesh, India. 3. Associate Professor, Department of Microbiology, Integral Institute of Medical Sciences and Research, Lucknow, Uttar Pradesh, India. 4. Assistant Professor, Department of Microbiology, Career Institute of Medical Sciences and Hospital, Lucknow, Uttar Pradesh, India.

Correspondence Address :
Nadeem Ahmad,
PhD Scholar, Department of Microbiology, Integral Institute of Medical Sciences and Research, Lucknow-226026, Uttar Pradesh, India.
E-mail: nadeemkhaan215@gmail.com

Abstract

Pseudomonas aeruginosa (P. aeruginosa) presents a complex challenge in terms of pathogenicity and antibiotic resistance. This versatile pathogen adeptly colonises various host tissues and evades the immune system through its intricate virulence factors. The review delves into the antimicrobial resistance mechanisms at play, which encompass inherent resistance characteristics and those acquired through genetic mutations and horizontal gene transfer. Notably, efflux pump systems and limited membrane permeability underpin its inherent resistance, rendering many conventional antibiotics ineffective. Multidrug Resistant (MDR) strains are on the rise, posing a substantial threat to patient care and infection control. In response, innovative strategies are being explored, including combination therapies to enhance the effectiveness of existing antibiotics and drug repurposing, redirecting existing medications to target P. aeruginosa. Phage therapy, which leverages bacteriophages to combat P. aeruginosa infections, is gaining attention as a promising solution. Infection prevention and control are pivotal, particularly in healthcare settings, to curtail the spread of P. aeruginosa. Surveillance programs are crucial for monitoring the prevalence and dissemination of antibiotic-resistant strains and guiding response strategies during outbreaks. Comprehending P. aeruginosa’s complex virulence and resistance mechanisms is paramount for developing efficient treatments and effective infection control measures. Ongoing research and collaborative efforts are instrumental in mitigating the substantial impact of P. aeruginosa infections on public health, underscoring the need for sustained vigilance and innovation in infectious disease management.

Keywords

Advanced therapies, Multidrug resistant, Virulence

Pseudomonas aeruginosa, a versatile gamma-proteobacterium, utilises binding elements such as pili, flagella, and biofilms to thrive in water, diverse substrates, and healthcare settings. It is prevalent in natural and manmade environments, including bodies of water, hospitals, and drains (1). The bacterium’s capacity to cause infections varies in severity, ranging from regional to potentially fatal. This gram negative opportunistic pathogen has emerged as a leading cause of nosocomial illnesses, including Ventilator Associated Pneumonia (VAP), infections in Intensive Care Units (ICUs), circulatory system infections from central lines, surgical site infections, Urinary Tract Infections (UTI), burn wound infections, keratitis, and otitis media, resulting in significant morbidity and mortality (2),(3). The prognosis remains grim for ICU sepsis and pneumonia. Recurrent airway infections by P. aeruginosa are common in patients with Cystic Fibrosis (CF) and Chronic Obstructive Pulmonary Disease (COPD) (4). This aerobic pathogen rapidly develops antibiotic resistance, adapts to external changes, and produces diverse virulence factors. Its ability to evade immune defenses through binding, colonisation, biofilm formation, and production of pathogenic agents poses a risk to weakened immune systems (5). P. aeruginosa outbreaks, fueled by adaptive mechanisms that enhance resistance, have become global epidemics (6).

This review aims to update readers on P. aeruginosa’s pathogenicity, antibiotic resistance, diagnostic advancements, and therapeutic potential. Researchers extensively searched Medline/PubMed and Cochrane Library datasets for relevant studies on virulence and drug resistance in P. aeruginosa.

Phenotypic Characteristics and Ecology of P. aeruginosa

Gilardi categorised non fermenter Gram-Negative Bacteria (GNB) into seven groups based on visible traits (6),(7). Meanwhile, Palleroni NJ classified them into five identical rRNA categories (Pseudomonas, Burkholderia, Comamonas, Brevimundas, and Stenotrophomonas) using rRNA-DNA sequence similarities. Pseudomonas aeruginosa, isolated from green pus, was later proposed as the type species (7),(8). Members of the Pseudomonadaceae family are widely distributed in the environment. P. aeruginosa is a major pathogen for humans and warm-blooded animals (9). Other Pseudomonas species affect fish, causing diseases such as septicaemia and inflammatory syndrome (10). Pseudomonas fluorescens and Pseudomonas putida contribute to food spoilage and contamination of transfusions. Uncommon pathogens like Pseudomonas stutzeri, Pseudomonas mendocina, Pseudomonas fulva, and Pseudomonas monteilii affect severely ill individuals. Plant pathogens include Pseudomonas baetica, Pseudomonas syringae, Pseudomonas plecoglossicida, and Pseudomonas viridiflava (11). P. aeruginosa, a GNB, possesses non fastidious traits and appears as straight or slightly curved rods (1.5±3 mm length, 0.5-0.7 mm width). It is aerobic and motile, bearing one or more polar flagella. It grows on various media such as nutrient agar, Luria-Bertani, and blood agar. Selective media include Cetrimide agar, King-A, and King-B. Optimal growth occurs at 37°C, with a tolerance range of 4-40°C (12). Distinct odors (“grape juice,” “fresh tortilla”), beta-haemolysis on blood agar, and colony colour aid in rapid identification (13).

P. aeruginosa Major Virulence Factor and Pathogenicity

P. aeruginosa, initially identified in wound infections, has emerged as a significant pathogen with complex pathogenic mechanisms.

Outer Membrane Proteins (OMPs): These proteins facilitate amino acid and peptide transport, antibiotic absorption, carbon source transport, bacterial adherence, virulence secretion, and host recognition (14).

Lipopolysaccharides (LPS): LPS, a structural component on the bacterial surface, protects the outer membrane and exhibits toxicity towards host cells. It contributes to tissue injury, adhesion, and host receptor recognition, influencing antimicrobial resistance and biofilm formation (15),(16).

Biofilm formation: P. aeruginosa’s biofilm formation involves flagella, pili, adhesins, and other factors, contributing to antibiotic resistance and increased persistence (17).

Secretory systems: Six secretion systems, including T6SS, T4SS, and T3SS components, aid in colonisation, adhesion, swimming, swarming, and chemotactic signaling. Secreted toxins modify host cell signaling, disrupt the extracellular matrix, cause tissue damage, and alter the local microbiota.

Exopolysaccharides (EPS): Alginate, Psl, and Pel EPSs promote biofilm formation, bacterial aggregation, and microcolony development in pneumonia. The anionic matrix protects against phagocytes, antibodies, and complement (17).

Toxins: Pseudomonas produces toxins such as T3SS-delivered ExoU, ExoT, ExoS, and ExoY, which alter the intracellular environment. Exotoxin A interferes with host protein production, pyocyanin causes oxidative damage, and various toxins impact immune response and tissue damage (18).

Lytic enzymes: Elastases LasA and LasB, alkaline protease (AprA), lipases, and esterase A damage epithelial cells through lung surfactant degradation and disruption of junctions [19,20].

Siderophores: Pyoverdine and pyochelin siderophores aid in iron acquisition and the production of virulence factors, including biofilms (21).

Antioxidant enzymes: Catalases, alkyl hydroperoxide reductases, and superoxide dismutase neutralise Reactive Oxygen Species (ROS), evading phagocyte elimination (22).

Quorum Sensing (QS): Pseudomonas utilises QS, involving Ls, Rhl, and Pqs pathways, to regulate gene expression and microbial activity during infection. This cooperation promotes survival and dampens the immune response (23),(24).

P. aeruginosa’s intricate pathogenicity hinges on these mechanisms, contributing to its adaptability and virulence across various contexts.

Mechanism of Pathogenesis (Table/Fig 1)

P. aeruginosa exhibits diverse pathogenic capabilities, infecting wounds, surgical sites, and the urinary system, and causing bloodstream infections, particularly prevalent in healthcare settings. Its primary focus is respiratory infections. The bacterium possesses a single polar flagellum and numerous type 4 pili crucial for mobility and initiating respiratory infections. The presence of flagella and pili sparks inflammation. Bacterial chemotaxis relies on the whip-like motion of the flagellum for corkscrew-like swimming in liquids. During infection, interaction with host epithelial cells occurs via the glycolipid asialoGM1, triggering NF-B signaling through TLR5 and caspase-1 responses via the Nod-like receptor, Ipaf, inducing significant inflammation (25).

Type 4 pili govern biofilm development and twitching motility, acting as pivotal adhesins in P. aeruginosa. Found at cell extremities, these pili extend and retract, enabling “twitching motility” on solid surfaces. They also contribute to flocking motility along with flagella, fostering bacterial aggregation to create small colonies. These microcolonies protect against host defenses and antibiotics. In CF patients, persistent lung infection leads to the formation of microcolonies resembling lab-developed mucoid colonies (17). Pili also play a role in non opsonic phagocytosis. Mutants lacking pilin or with poor twitching movement exhibit reduced pathogenicity. Pili are targeted in anti-pseudomonal therapy, including vaccination, yet the antigenic diversity of pili across P. aeruginosa strains complicates these efforts (25). P. aeruginosa’s adherence to host cells relies on lectins, predominantly LecB, a fucose-binding lectin. LecB’s strong binding stems from specific charge delocalisation, low-barrier hydrogen bonds, collaborative hydrogen bond rings, and water molecule motion (26). In CF patients, increased bacterial Vav3 enzyme in airway epithelial cells enhances P. aeruginosa adherence through 1 integrin and fibronectin synthesis, reinforcing early-stage adherence (27).

P. aeruginosa’s pathogenesis involves more than adherence, with certain clinical isolates showing faulty LasR genes, leading to constitutive biofilm development without external stimuli. The primary QS regulator, LasR, encoded by the lasR gene, is implicated in the growth of these isolates (28). Further insights into P. aeruginosa QS and its control of virulence have emerged. Quantum-Sensing Autoinducer (QSAI) molecules initiate QS, requiring about 2000 cells to deliver significant amounts of QSAI (29),(30). Key QS circuits like LasI and RhlI produce QSAIs, which are recognised by LasR and RhlR. Genes such as pyocyanin and rhamnolipids, important virulence factors, are controlled by QSAIs binding to LasR and RhlR (31). The non coding RNA, RhlS, associated with the RNA-binding molecule Hfq, promotes Vfr synthesis, a universal virulence regulator (32).

P. aeruginosa releases EPS during biofilm formation, including Psl, Pel, and alginate. Psl is vital for microbial growth, aiding bacterial adhesion on surfaces. Pel, a highly charged EPS, promotes cell-to-cell communication within biofilms. Alginate’s high molecular weight enhances biofilm stability and protects against dehydration. These EPSs foster microbial growth in airways, as exemplified by S. salivarius interacting with Psl to initiate and maintain biofilm development in CF lungs (33). Biofilm production and antimicrobial tolerance in P. aeruginosa are not fully understood, emphasising the need for ongoing research. The conserved putative protein expressed by the PA2146 gene controls biofilm formation and antibiotic endurance. Although it does not affect planktonic cells, its deletion significantly impairs P. aeruginosa PAO1 biofilm structure and tolerance to tobramycin (34). Additionally, P. aeruginosa isolates with a mucoid trait, crucial for CF pathogenicity (35), secrete QSAI molecules C4-HSL and PQS. C4-HSL engages with EPS through van der Waals contacts, while PQS forms thermodynamically resistant ionic complexes with EPS-bound Ca2+ (36). Iron/siderophore acquisition systems play a role in P. aeruginosa’s virulence, contributing to biofilm formation and the development of hypervirulent variants in wound infections (37). P. aeruginosa generates virulence factors like pyocyanin, phenazine, rhamnolipid, and pyoverdine, controlled by QS pathways for pathogenicity (38). To successfully infect hosts, P. aeruginosa adheres, forms biofilms, and evades immunity. Research into type II, III, IV, and VI secretion systems reveals their role in delivering effectors to host cells. Type III secretion system effectors, like exotoxin T, disrupt NLRC4 inflammasome activation, hindering P. aeruginosa pathogenicity (39).

P. aeruginosa biofilms (e.g., Psl/Pel) interact with human immune cells via C-type lectin receptors: DC-SIGN, Mannose Receptor (MR), and Dectin-2. DC-SIGN recognises both planktonic and biofilm cells, while MR and Dectin-2 exhibit weaker biofilm recognition. Biofilm carbohydrates, particularly mannose-rich ones, can interfere with immune receptor activities (38). P. aeruginosa adjusts metabolic pathways to evade immune clearance and thrive in inflamed human airways, utilising host macrophage-produced itaconate. This shift encourages biofilm growth, boosting EPS production while sacrificing LPS. EPS shields against itaconate-induced membrane stress. Altered metabolism stimulates myeloid cell reprogramming, fostering a chronic infection-prone environment (40). P. aeruginosa’s virulence relies on factors such as QS, flagella, and biofilm formation. Key players include pyoverdine, the lasR gene, capsules, alginate D, elastase B, exotoxin A, and Transcription Factors (TFs). Master regulators of QS include RsaL, QscR, RhlR, CdpR, MvfR, PchR, PhoB, LasR, while ExsA governs T3SS and GacA T6SS (41). The role of the AlgKX protein in alginate synthesis and biofilm adhesion is highlighted (42).

Additional Elements Influencing the Survival and Infections of Pseudomonas aeruginosa

P. aeruginosa exhibits two functional paralogs of DksA, namely DksA1 with a zinc-finger motif and DksA2, facilitating resistance to oxidative stress. Both planktonic and biofilm cells rely on DksA1 for H2O2 tolerance by regulating katA and katE gene expression, evading macrophage destruction. DksA2, produced under zinc scarcity, substitutes for DksA1 in oxidative stress defense (43). The Type VI Secretion System (T6SS) empowers Pseudomonas aeruginosa’s anaerobic advantage through the release of an anion-binding protein and molybdate acquisition (44). Its T6SS toxin (Tse8) binds to VgrG1a, entering target cells to hinder protein synthesis (45). Pseudomonas aeruginosa mutations in CF patients’ infections heighten only when other species are absent, suggesting benefits of polymicrobial infections in eradication efforts (46). Antibiotic resistance develops swiftly in P. aeruginosa populations within days based on therapy type and duration. Unidentifiable culture-based rare mutations arise in 5-12 days, while non targeted resistance diminishes (47). Strains with deactivated fgE genes exhibit enhanced biofilm cell resistance to diverse antibiotics like gentamicin and colistin due to altered cell aggregation, surface adherence, and biofilm formation (48).

Diagnosis

Diagnosing P. aeruginosa infections hinges on timely and accurate cultures from appropriate sites. Blood cultures should precede antibiotic therapy in suspected severe cases, obtained within an hour of identification (49). Urine cultures are essential for suspected UTIs and Catheter-Associated UTIs (CAUTIs). Sputum cultures aid pneumonia diagnosis, especially in productive individuals, while tailored approaches are used for CF patients. Detection involves recognising colony appearance and growth on media; cetrimide-containing media can aid amidst diverse bacteria. Antimicrobial susceptibility testing guides effective antibiotic selection post-culture detection, often utilising automated systems for minimal inhibitory doses and resistance profiling (50). Advanced and emerging diagnostics for early P. aeruginosa detection benefit from molecular techniques. Molecular methods improve regular recognition and epidemiological studies and reduce dependency on cultivation. Challenges of culture-based methods include specific media requirements, microbial growth compatibility, and prolonged incubation times. Molecular diagnostics directly identify bacteria from clinical samples, enhancing safety and nucleic acid preservation. Storage temperature ensures prolonged preservation of nucleic acids’ quantity and quality (51).

Advance and Emerging Diagnostic Tools for Early Detection of Pseudomonas aeruginosa

Molecular diagnostic methods have gained significant importance in clinical laboratories due to their advantages in recognising pathogenic microorganisms, fingerprinting, and epidemiological studies. These techniques reduce the need for cultivation, thereby expediting phenotypic and biochemical diagnoses. Drawbacks of cultivation-based approaches include microbe-specific artificial media requirements, compatibility with chosen media, and lengthy incubation times. Molecular diagnostics directly identify bacteria from clinical specimens, minimising risks to lab workers and preserving nucleic acids’ quantity and quality with proper storage conditions (51). Polymerase Chain Reaction (PCR) is a well-established technique for detecting and categorising P. aeruginosa. It amplifies DNA with catalytic DNA replication and targeted primers. Genes like ecfX, oprL, and gyrB are used as targets in clinical samples due to their high specificity and sensitivity. False positives and negatives may arise due to P. aeruginosa’s genomic flexibility and horizontal gene transfer to other species. Multiplex PCR, examining multiple specific genes concurrently, can mitigate these issues. Multiplex PCR offers benefits such as internal controls, cost savings, material preservation, and template assessment. Primer concentration and primer-primer competition are critical considerations. Though evolving, a standardised procedure for P. aeruginosa detection through multiplex PCR is lacking (51),(52). Quantitative real-time PCR (qPCR) is increasingly used in clinical microbiology to detect pathogens. It offers a quick turnaround, simplicity, reproducibility, and enhanced quantitative capabilities compared to traditional PCR (53). These newer techniques offer benefits such as simple equipment, minimal training, and rapid, accurate results within an hour. They are particularly valuable for point-of-care testing, especially in resource-limited areas. Both Loop-mediated Isothermal Amplification (LAMP) and PCR assays exhibit high sensitivity and specificity, making them effective tools (54),(55). LAMP stands out by directly detecting P. aeruginosa in clinical plasma within 20 minutes, bypassing DNA purification steps (55). Polymerase Spiral Reaction (PSR) utilises DNA polymerase with strand-dispersion activity and isothermal DNA amplification targeting the tox A gene, demonstrating higher sensitivity (10 times that of PCR) and rapidity without preliminary denaturation (56).

Next-Generation Sequencing (NGS) has replaced Sanger DNA sequencing, enabling comprehensive analysis of bacterial genomes, including transcription, translation, and more. This approach is widely used in clinical microbiology for advanced pathogen characterisation, offering precise results with less DNA, and has gained adoption since its 2005 launch (57),(58). NGS benefits include accurate data with reduced noise, though expertise in lab procedures, data processing, and interpretation is vital (59). Overcoming technical challenges and updated software are necessary as sequencing technology evolves (60). NGS metagenomic studies based on the 16S rRNA gene have utilised this technology for quick identification of diverse bacteria in heterogeneous clinical samples, without prior cultivation. Compared to conventional culture methods, NGS sequencing of 16S rRNA genes proves reliable, quantitatively sensitive, and precise for determining the microbial nature and proportions in polymicrobial samples (61).

Antimicrobial Resistance in Pseudomonas aeruginosa

Clinical settings are experiencing a rise in Multi-Drug Resistant (MDR), Extensively Drug-Resistant (XDR), Pan-Drug Resistant (PDR), and Totally Drug-Resistant (TDR) bacterial isolates. The European Society of Clinical Microbiology and Infectious Diseases (ESCMID) has established guidelines for these classifications (62). Global bodies like the World Health Organisation (WHO) and the US Centers for Disease Control and Prevention (CDC) are alarmed by the escalating cases of MDR bacteria due to their threat to public health (63),(64). Such infections lead to prolonged hospital stays, diminished quality of life, challenges, and increased mortality when adequate treatments are absent. Strong correlations between MDR bacteria and poor clinical outcomes are evident in numerous cases (65). Clinical settings attribute antibiotic resistance to inappropriate usage and the waning interest of pharmaceutical companies in antibacterial research (66). P. aeruginosa exhibits resistance mechanisms encompassing innate drug resistance, biofilm formation, and rapid adaptation (67),(68).

These mechanisms (summarised in (Table/Fig 2)) encompass intrinsic factors like membrane permeability, overexpression of efflux systems, and production of antibiotic-inactivating enzymes (refer to (Table/Fig 3)). Acquired resistance stems from mutations and horizontal gene transfers impacting efflux pumps, porins, Penicillin-Binding Proteins (PBP), and enzymes. Adaptive resistance arises from continued antibiotic use, biofilm development, latent forms, and exposure to environmental stress (69). Often, multiple mechanisms co-exist, collectively conferring resistance to various antimicrobials in Pseudomonas aeruginosa, posing significant treatment challenges (70),(71).

Beta-lactam antibiotics are commonly used to treat Pseudomonas infections in clinical settings, especially in vulnerable patient groups like newborns, children, pregnant women, and the elderly. Alternative medications like aminoglycosides, colistin, and fluoroquinolones should be avoided due to potential side-effects such as tendon issues, light sensitivity, and liver toxicity. Last-resort regimens might be necessary if resistance increases or hypersensitivity to beta-lactams occurs, impacting patients’ quality of life (12),(72). Kidney toxicity is a major concern for transplant recipients given their multiple medications affecting kidney function. The “difficult-to-treat resistance” classification evaluates bacterial resistance based on clinical efficacy and the risk-benefit ratio, categorising Pseudomonas isolates as “Difficult-To-Treat Resistant” (DTR) if they are robust against cephalosporins, carbapenems, and quinolones (73). MDR P. aeruginosa emerges due to ICU admission, prior hospital stays, and previous diverse antibiotic use, including quinolones, cephalosporins, and carbapenems (74). ICU isolates often exhibit higher protease and elastase levels, key virulence factors linked to severe and invasive diseases.

Resistance Acquisition in Pseudomonas aeruginosa toward Antimicrobials other than β-lactams

The intricate cell wall of Gram-negative microbes acts as a selective barrier, impacting antibiotic binding and pharmacological efficacy. P. aeruginosa’s less permeable outer membrane renders it less sensitive to certain medications, influenced by porins that act as β-barrel proteins on the membrane’s surface. Porins include non specific (OprF), specific (OprB, OprD), gated (OprC, OprH), and efflux (OprM, OprN, OprJ) types (75),(76). The most common non-lipoprotein porin, OprF, maintains membrane integrity, influences QS, fosters biofilms, encourages adherence, and causes infections. Fluoroquinolones and beta-lactams use porin channels aminoglycoside uptake requires oxygen/nitrogen-dependent transport, while colistin interacts with LPS (77). Kidney toxicity is a concern for transplant recipients due to potential drug effects. DTR categorises Pseudomonas isolates as DTR if resistant to cephalosporins, carbapenems, and quinolones (73). MDR Pseudomonas results from ICU admissions, prior hospital stays, and antibiotic use (74). Proteases and elastases are higher in ICU isolates and linked to severe infections.

Efflux pumps, notably the RND subfamily, cause MDR by impacting drug effects. Twelve RND pumps exist, with four overexpressed due to gene mutations. MexAB-OprM (β-lactams, quinolones), MexCD-OprJ (β-lactams), MexEF-OprN (quinolones), and MexXY-OprM (aminoglycosides) show various substrate profiles. Efflux resistance is clinically relevant when combined with other mechanisms (78). Resistance mechanisms differ in impact; isolates might resist amikacin but not tobramycin. Fluoroquinolone resistance involves efflux, mutations in DNA gyrase (gyrA, gyrB), and topoisomerase IV (parC, parE) (12). Aminoglycoside resistance arises from ribosome target modification or Aminoglycoside-Modifying Enzymes (AMEs) altering drug structure (79). AMEs spread via horizontal gene transfer. Antimicrobial resistance amplifies colistin use, a last-resort therapy. Initially, resistance was linked to chromosomal mutations, but the mobile colistin resistance gene mcr-1 introduced plasmid-mediated resistance in 2015. The arn BCADTEF operon modifies lipopolysaccharide, hindering colistin-LPS binding. Regulatory mechanisms (PhoPQ, PmrAB) activate under inadequate cation levels, furthering resistance (80). In conclusion, Pseudomonas outer membrane and porins, efflux pumps, and specific resistance mechanisms challenge effective antibiotic treatment.

Beta-lactamase Production in Pseudomonas aeruginosa

Scientific concerns including Multidrug Resistance (MDR) and the production of extended-spectrum beta-lactamases (ESBLs) by enteric gram-negative rods in hospitals. Because MDR bacteria are resistant to antibiotic therapy, they are a constant source of concern (81). Pseudomonas infections rely on β-lactam antibiotics, with carbapenems as the last resort against MDR strains (82). However, widespread carbapenem use has led to concerning carbapenem resistance (83). Piperacillin-tazobactam and vancomycin use have been linked to acquiring carbapenem-resistant Pseudomonas aeruginosa, supported by a recent meta-analysis. Mechanisms of beta-lactam resistance include porin mutations, efflux pump overexpression, and PBP changes. Diverse β-lactamases contribute, with resistance often resulting from several factors (84). Pseudomonas PBPs also undergo alterations affecting Beta-lactam susceptibility (12). AmpC β-lactamase is chromosomally encoded and inducible, derepressed by antibiotics like ceftazidime, carbapenems, and clavulanic acid (85). AmpD gene mutations can lead to AmpC hyperproduction (12).

Pseudomonas, classified as “SPACE” (Serratia, Pseudomonas, Acinetobacter, Citrobacter, Enterobacter), displays inducible AmpC-based resistance, not inhibited by first-generation β-lactamase inhibitors. Plasmid-mediated carbapenemases render many antibiotics ineffective, causing significant treatment challenges (86). Carbapenem-resistant Pseudomonas is a major concern, particularly in low to middle-income nations. Infections from carbapenem-resistant GNB incur higher costs, prolonged hospital stays, and poorer outcomes compared to carbapenem-susceptible strains (87). Carbapenem-resistant Pseudomonas bacteremia is associated with a tripled mortality risk (88). Initially, OprD inactivation and efflux pumps were highlighted in carbapenem resistance, but recent findings emphasise carbapenemases’ increasing role (89). The ST235 clone is a widespread carbapenem-resistant Pseudomonas strain, carrying metallo-β-lactamases like IMP, NDM, and VIM enzymes (90).

New and Emerging Therapies for Resistant Pseudomonas aeruginosa (Table/Fig 4)

Antimicrobial research has shifted its focus to the investigation of novel strategies beyond conventional antibiotics due to the worrisome growth in antimicrobial resistance among bacterial strains. Bacteriophages, antimicrobial peptides with various structural and functional characteristics, virulence inhibitors, siderophores, naturally occurring substances like essential oils, and other adjuvants, including efflux pump blockers and monoclonal antibodies, are a few of these cutting-edge approaches (91),(92). These medications have the potential to play a vital role in the treatment of serious bacterial infections brought on by P. aeruginosa and other dangerous pathogens.

Challenges in Developing Therapies for Pseudomonas aeruginosa

Developing effective therapies for P. aeruginosa infections is hindered by its intrinsic resistance mechanisms, biofilm-forming capability, and propensity for antibiotic resistance. The bacterium’s innate resistance, attributed to efflux pumps, impermeable outer membranes, and β-lactamase production, hinders drug penetration and activity. Biofilm formation provides resilience against antimicrobials and immune responses. Disrupting biofilms is a priority, with research focusing on antimicrobial peptides, enzymes, and nanoparticles. Antibiotic resistance, achieved via mutations, gene transfer, and adaptive mechanisms, threatens the efficacy of last-resort antibiotics. Limited treatment options aggravate the situation, prompting increased use of drugs like colistin, further promoting resistance. Pseudomonas can manipulate host immunity, leading to chronic infections. Immunomodulatory therapies that enhance immunity or target virulence factors are being explored. Overcoming these challenges requires innovative strategies and collaborative efforts to effectively combat P. aeruginosa infections (90),(91),(92).

Future Perspectives

Addressing P. aeruginosa infections presents challenges due to intrinsic resistance, biofilm formation, and antibiotic resistance. Promising perspectives for the future include personalised medicine and tailoring treatment based on genetic and immune profiles. This strategy optimises therapeutic outcomes and minimises resistance risks by considering strain resistance and patient factors.

Combination therapies and treatment regimens offer potential by combining antimicrobial agents with diverse mechanisms and adjunctive therapies. Developing novel therapeutic targets is another focus, aiming to disrupt key components like virulence factors and metabolic pathways. Targets such as the type III secretion system and QS have been explored, but further research is needed to validate their efficacy and safety. Enhanced diagnostic techniques are crucial, as accurate and timely diagnosis guides effective treatment and prevents the spread of drug-resistant strains. Molecular methods and point-of-care tools offer sensitivity and rapidity. Prompt diagnosis allows targeted treatment, reduces antibiotic misuse, and enhances outcomes in P. aeruginosa infections. In conclusion, future perspectives encompass personalised medicine, combination therapies, the development of novel targets, and improved diagnostics. These strategies hold the potential to effectively combat this challenging pathogen.

Conclusion

The recent update on P. aeruginosa highlights its multifaceted challenges. This adaptable pathogen possesses various virulence factors, contributing to its ability to cause infections. Furthermore, its intrinsic and acquired antibiotic resistance mechanisms complicate treatment options. Understanding the molecular mechanisms of pathogenicity and antibiotic resistance offers valuable insights for targeted therapies. Efforts focus on identifying therapeutic targets, exploring combination therapies, and utilising innovative approaches such as antimicrobial peptides, bacteriophage therapy, and nanotechnology. Improved diagnostic techniques are crucial for accurate detection, treatment decisions, and preventing the spread of drug-resistant strains. However, MDR strains pose a significant challenge, requiring ongoing research and collaboration. A comprehensive interdisciplinary approach involving researchers, clinicians, and policymakers is necessary to address pathogenicity and antibiotic resistance in Pseudomonas aeruginosa. Continued research, innovation, and collaboration are essential to combat this formidable pathogen, enhancing patient outcomes and mitigating its impact.

Acknowledgement

The author would like to thank Integral University (MCN: IU/R&D/2024-MCN0002434) for allowing collection and compilation of all the data.

References

1.
Tuon FF, Dantas LR, Suss PH, Tasca Ribeiro VS. Pathogenesis of the Pseudomonas aeruginosa biofilm: A review. Pathogens. 2022;11(3):300. Available from: https://doi.org/10.3390/pathogens11030300. [crossref][PubMed]
2.
Shariati A, Azimi T, Ardebili A, Chirani AS, Bahramian A, Por Mohammad A, et al. Insertional inactivation of oprD in carbapenem-resistant Pseudomonas aeruginosa strains isolated from burn patients in Tehran, Iran. New Microbes New Infect. 2018;21:75-80. [crossref][PubMed]
3.
Reig S, Le Gouellec A, Bleves S. What is new in the anti Pseudomonas aeruginosa clinical development pipeline since the 2017 WHO alert? Front Cell Infect Microbiol. 2022;12:909731. https://doi.org/10.3389/fcimb.2022.909731. [crossref][PubMed]
4.
Turkina MV, Vikstrom E. Bacteria-host crosstalk: Sensing of the quorum in the context of Pseudomonas aeruginosa infections. J Innate Immun. 2019;11(3):263-79. [crossref][PubMed]
5.
Talwalkar JS, Murray TS. The approach to Pseudomonas aeruginosa in cystic fibrosis. Clin Chest Med. 2016;37(1):69-81. [crossref][PubMed]
6.
Spagnolo A, Sartini M, Cristina ML. Pseudomonas aeruginosa in the healthcare facility setting. Rev Med Microbiol. 2021. Publish Ahead of Print. https://doi.org/10.1097/MRM.0000000000000271. [crossref]
7.
Fernández M, Porcel M, de la Torre J, Molina-Henares MA, Daddaoua A, Llamas MA, et al. Analysis of the pathogenic potential of nosocomial Pseudomonas putida strains. Front Microbiol. 2015;6:e871. [crossref]
8.
Palleroni NJ. Pseudomonas classification. A new case history in the taxonomy of gram-negative bacteria. Antonie Van Leeuwenhoek. 1993;64(3-4):231-51. [crossref][PubMed]
9.
Haenni M, Bour M, Chatre P, Madec JY, Plésiat P, Jeannot K. Resistance of animal strains of Pseudomonas aeruginosa to carbapenems. Front Microbiol. 2017;8:1847. [crossref][PubMed]
10.
Algammal AM, Mabrok M, Sivaramasamy E, Youssef FM, Atwa MH, El-Kholy AW, et al. Emerging MDR Pseudomonas aeruginosa in fish commonly harbor oprL and toxA virulence genes and blaTEM, blaCTX-M, and tetA antibiotic-resistance genes. Sci Rep. 2020;10(1):15961. [crossref][PubMed]
11.
Gutierrez-Barranquero JA, Cazorla FM, de Vincente A. Pseudomonas syringae pv. Syringae associated with mango trees, a particular pathogen within the “Hodgepodge” of the Pseudomonas syringae Complex. Front Plant Sci. 2019;10:570. [crossref][PubMed]
12.
Gajdacs M, Burian K, Terhes G. Resistance levels and epidemiology of non-fermenting gram-negative bacteria in urinary tract infections of inpatients and Outpatients (RENFUTI): A 10-year epidemiological snapshot. Antibiotics (Basel). 2019;8(3):143. Doi: 10.3390/antibiotics8030143. PMID: 31505817; PMCID: PMC6784256. [crossref][PubMed]
13.
Clark ST, Diaz Caballero J, Cheang M, Coburn B, Wang PW, Donaldson SL, et al. Phenotypic diversity within a Pseudomonas aeruginosa population infecting an adult with cystic fibrosis. Sci Rep. 2015;5:10932. Doi: 10.1038/srep10932. PMID: 26047320; PMCID: PMC4456944. [crossref][PubMed]
14.
Sabnis A, Hagart KL, Klöckner A, Becce M, Evans LE, Furniss RCD, et al. Colistin kills bacteria by targeting lipopolysaccharide in the cytoplasmic membrane. Elife. 2021;10:e65836. [crossref][PubMed]
15.
Park WS, Lee J, Na G, Park S, Seo SK, Choi JS, et al. Benzyl isothiocyanate attenuates inflammasome activation in Pseudomonas aeruginosa LPS-stimulated THP-1 cells and exerts regulation through the MAPKs/NF-kappaB pathway. Int J Mol Sci. 2022;23(3):1228. [crossref][PubMed]
16.
Chambers JR, Cherny KE, Sauer K. Susceptibility of Pseudomonas aeruginosa dispersed cells to antimicrobial agents is dependent on the dispersion cue and class of the antimicrobial agent used. Antimicrob Agents Chemother. 2017;61(12):e00846-17. [crossref][PubMed]
17.
Tuon FF, Dantas LR, Suss PH, Tasca Ribeiro VS. Pathogenesis of the Pseudomonas aeruginosa biofilm: A review. Pathogens. 2022;11:300. https://doi.org/10.3390/pathogens11030300. [crossref][PubMed]
18.
Alatraktchi FA, Svendsen WE, Molin S. Electrochemical detection of pyocyanin as a biomarker for pseudomonas aeruginosa: A focused review. Sensors (Basel). 2020;20(18):5218. Doi: 10.3390/s20185218. PMID: 32933125; PMCID: PMC7570525. [crossref][PubMed]
19.
Chadha J, Harjai K, Chhibber S. Revisiting the virulence hallmarks of Pseudomonas aeruginosa: A chronicle through the perspective of quorum sensing. Environ Microbiol. 2021;24(6):2630-56. [crossref][PubMed]
20.
Zhao F, Wang Q, Zhang Y, Lei L. Anaerobic biosynthesis of rhamnolipids by Pseudomonas aeruginosa: Performance, mechanism, and its application potential for enhanced oil recovery. Microb Cell Fact. 2021;20(1):103. [crossref][PubMed]
21.
Perraud Q, Kuhn L, Fritsch S, Graulier G, Gasser V, Normant V, et al. Opportunistic use of catecholamine neurotransmitters as siderophores to access iron by Pseudomonas aeruginosa. Environ Microbiol. 2022;24(2):878-93. [crossref][PubMed]
22.
Dar HH, Anthonymuthu TS, Ponomareva LA, Souryavong AB, Shurin GV, Kapralov AO, et al. A new thiol-independent mechanism of epithelial host defense against Pseudomonas aeruginosa: iNOS/NO (*) sabotage of theft-ferroptosis. Redox Biol. 2021;45:102045. [crossref][PubMed]
23.
Papenfort K, Bassler BL. Quorum sensing signal-response systems in Gram-negative bacteria. Nat Rev Microbiol. 2016;14(9):576-88. https://doi.org/10.1038/nrmicro.2016.89. [crossref][PubMed]
24.
Curran CS, Bolig T, Torabi-Parizi P. Mechanisms and targeted therapies for Pseudomonas aeruginosa lung infection. Am J Respir Crit Care Med. 2018;197(6):708-27. https://doi.org/10.1164/rccm.201705-1043SO. [crossref][PubMed]
25.
Reynolds D, Kollef M. The epidemiology and pathogenesis and treatment of Pseudomonas aeruginosa infections: An update. Drugs. 2021;81(18):2117-31. https://doi.org/10.1007/s40265-021-01635-6. [crossref][PubMed]
26.
Gajdos L, Blakeley MP, Haertlein M, Forsyth VT, Devos JM, Imberty A. Neutron crystallography reveals mechanisms used by Pseudomonas aeruginosa for host-cell binding. Nat Commun. 2022;13(1):194. https://doi.org/10.1038/s41467-021-27871-8. [crossref][PubMed]
27.
Badaoui M, Zoso A, Idris T, Bacchetta M, Simonin J, Lemeille S, et al. Vav3 Mediates Pseudomonas aeruginosa adhesion to the cystic fibrosis airway epithelium. Cell Rep. 2020;32(1):107842. https://doi.org/10.1016/j.celrep.2020.107842. [crossref][PubMed]
28.
Jeske A, Arce-Rodriguez A, Thöming JG, Tomasch J, Häussler S. Evolution of biofilm-adapted gene expression profiles in lasR-deficient clinical Pseudomonas aeruginosa isolates. NPJ Biofilms Microbiomes. 2022;8(1):6. https://doi.org/10.1038/s41522-022-00268-1. [crossref][PubMed]
29.
Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science. 1998;280(5361):295-98. https://doi.org/10.1126/science.280.5361.295. [crossref][PubMed]
30.
Darch SE, Simoska O, Fitzpatrick M, Barraza JP, Stevenson KJ, Bonnecaze RT, et al. Spatial determinants of quorum signalling in a Pseudomonas aeruginosa infection model. Proc Natl Acad Sci U S A. 2018;115(18):4779-84. https://doi.org/10.1073/pnas.1719317115. [crossref][PubMed]
31.
Kumar L, Patel SKS, Kharga K, Kumar R, Kumar P, Pandohee J, et al. Molecular mechanisms and applications of N-Acyl homoserine lactone mediated quorum sensing in bacteria. Molecules. 2022;27(21):7584. https://doi.org/10.3390/molecules27217584. [crossref][PubMed]
32.
Trouillon J, Han K, Attrée I, Lory S. The core and accessory Hfq interactomes across Pseudomonas aeruginosa lineages. Nat Commun. 2022;13(1):1258. https://doi.org/10.1038/s41467-022-28849-w. [crossref][PubMed]
33.
Stoner SN, Baty JJ, Scofeld JA. Pseudomonas aeruginosa polysaccharide Psl supports airway microbial community development. ISME J. 2022. https://doi.org/10.1038/s41396-022-01221-y. [crossref][PubMed]
34.
Kaleta MF, Petrova OE, Zampaloni C, Garcia-Alcalde F, Parker M, Sauer K. A previously uncharacterized gene, PA2146, contributes to biofilm formation and drug tolerance across the γ-Proteobacteria. NPJ Biofilms Microbiomes. 2022;8(1):54. https://doi.org/10.1038/s41522-022-00314-y. [crossref][PubMed]
35.
Bjarnsholt T, Jensen P, Fiandaca MJ, Pedersen J, Hansen CR, Andersen CB, et al. Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients. Pediatr Pulmonol. 2009;44(6):547-58. https://doi.org/10.1002/ppul.21011.[crossref][PubMed]
36.
Hills OJ, Yong CW, Scott AJ, Devine DA, Smith J, Chappell HF. Atomic-scale interactions between quorum sensing autoinducer molecules and the mucoid Pseudomonas aeruginosa exopolysaccharide matrix. Sci Rep. 2022;12(1):7724. https://doi.org/10.1038/s41598-022-11499-9. [crossref][PubMed]
37.
Tahmasebi H, Dehbashi S, Nasaj M, Arabestani MR. Molecular epidemiology and collaboration of siderophore-based iron acquisition with surface adhesion in hypervirulent Pseudomonas aeruginosa isolates from wound infections. Sci Rep. 2022;12(1):7791. https://doi.org/10.1038/s41598-022-11984-1. [crossref][PubMed]
38.
Singh S, Almuhanna Y, Alshahrani MY, Lowman DW, Rice PJ, Gell C, et al. Carbohydrates from Pseudomonas aeruginosa biofilms interact with immune C-type lectins and interfere with their receptor function. NPJ Biofilms Microbiomes. 2021;7(1):87. https://doi.org/10.1038/s41522-021-00257-w. [crossref][PubMed]
39.
Mohamed MF, Gupta K, Goldufsky JW, Roy R, Callaghan LT, Wetzel DM, et al. CrkII/Abl phosphorylation cascade is critical for NLRC4 inflammasome activity and is blocked by Pseudomonas aeruginosa. Nat Commun. 2022;13(1):1295. https://doi.org/10.1038/s41467-022-28967-5. [crossref][PubMed]
40.
Riquelme SA, Liimatta K, Lung WFT, Fields B, Ahn D, Chen D, et al. Pseudomonas aeruginosa utilises host-derived itaconate to redirect its metabolism to promote biofilm formation. Cell Metab. 2020;31(6):1091-106.e6. https://doi.org/10.1016/j.cmet.2020.04.017. [crossref][PubMed]
41.
Huang H, Shao X, Xie Y, Wang T, Zhang Y, Wang X, et al. An integrated genomic regulatory network of virulence-related transcriptional factors in Pseudomonas aeruginosa. Nat Commun. 2019;10(1):2931. https://doi.org/10.1038/s41467-019-10778-w. [crossref][PubMed]
42.
Gheorghita AA, Li YE, Kitova EN, Bui DT, Pfoh R, Low KE, et al. Structure of the AlgKX modification and secretion complex required for alginate production and biofilm attachment in Pseudomonas aeruginosa. Nat Commun. 2022;13(1):7631. https://doi.org/10.1038/s41467-022-35131-6. [crossref][PubMed]
43.
Fortuna A, Collalto D, Schiaf V, Pastore V, Visca P, Ascenzioni F, et al. The Pseudomonas aeruginosaDksA1 protein is involved in H2O2 tolerance and within-macrophages survival and can be replaced by DksA2. Sci Rep. 2022;12(1):10404. https://doi.org/10.1038/s41598-022-14635-7. [crossref][PubMed]
44.
Wang T, Du X, Ji L, Han Y, Dang J, Wen J, et al. Pseudomonas T6SS-mediated molybdate transport contributes to bacterial competition during anaerobiosis. Cell Rep. 2021;35(2):108957. https://doi.org/10.1016/j.celrep.2021.108957. [crossref][PubMed]
45.
Nolan LM, Cain AK, Clamens T, Furniss RCD, Manoli E, Sainz-Polo MA, et al. Identification of Tse8 as a Type VI secretion system toxin from Pseudomonas aeruginosa that targets the bacterial transamidosome to inhibit protein synthesis in prey cells. Nat Microbiol. 2021;6(9):1199-210. https://doi.org/10.1038/s41564-021-00950-8. [crossref][PubMed]
46.
Lujan AM, Paterson S, Hesse E, Sommer LM, Marvig RL, Sharma MD, et al. Polymicrobial infections can be selected against Pseudomonas aeruginosa mutators because of quorum-sensing trade-offs. Nat Ecol Evol. 2022;6(7):979-88. https://doi.org/10.1038/s41559-022-01768-1. [crossref][PubMed]
47.
Chung H, Merakou C, Schaefers MM, Flett KB, Martini S, Lu R, et al. Rapid expansion and extinction of antibiotic resistance mutations during treatment of acute bacterial respiratory infections. Nat Commun. 2022;13(1):1231. https://doi.org/10.1038/s41467-022-28188-w. [crossref][PubMed]
48.
Valentin JDP, Straub H, Pietsch F, Lemare M, Ahrens CH, Schreiber F, et al. Role of the flagellar hook in the structural development and antibiotic tolerance of Pseudomonas aeruginosa biofilms. ISME J. 2022;16(4):1176-86. https://doi.org/10.1038/s41396-021-01157-9. [crossref][PubMed]
49.
Rhodes A, Laura E, Waleed A, Mitchell L, Massimo A, Ricard F, et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock: 2016. Crit Care Med. 2017;45(3):486-552. https://doi.org/10.1097/CCM.00000 00000002255.
50.
Bassetti M, Vena A, Croxatto A, Righi E, Guery B. How to manage Pseudomonas aeruginosa infections. Drugs Context. 2018;7:212527. https://doi.org/10.7573/dic.212527. [crossref][PubMed]
52.
Chen JW, Lau YY, Krishnan T, Chan KG, Chang CY. Recent advances in molecular diagnosis of Pseudomonas aeruginosa infection by state-of-the-art genotyping techniques. Front Microbiol. 2018;9:1104. [crossref][PubMed]
52.
Aghamollaei H, Moghaddam MM, Kooshki H, Heiat M, Mirnejad R, Barzi NS. Detection of Pseudomonas aeruginosa by a triplex polymerase chain reaction assay based on lasI/R and gyrB genes. J Infect Public Health. 2015;8(4):314-22. [crossref][PubMed]
53.
Fournier PE, Drancourt M, Colson P, Rolain JM, La Scola B, Raoult D. Modern clinical microbiology: New challenges and solutions. Nat Rev Microbiol. 2013;11(8):574-85. [crossref][PubMed]
54.
Zhao X, Wang L, Li Y, Xu Z, Li L, He X, et al. Development and application of a loop-mediated isothermal amplification method on rapid detection of Pseudomonas aeruginosa strains. Food Research International. 2012;47(2):166-73. Doi: 10.1016/j.foodres.2011.04.042. [crossref][PubMed]
55.
Yang R, Fu S, Ye L, Gong M, Yang J, Fan Y, et al. Rapid detection of Pseudomonas aeruginosa septicemia by real-time fluorescence loop-mediated isothermal amplification of free DNA in blood samples. Int J Clin Exp Med. 2016;9(7):13701-11.
56.
Dong D, Zou D, Liu H, Yang Z, Huang S, Liu N, et al. Rapid detection of Pseudomonas aeruginosa targeting the toxA gene in intensive care unit patients from Beijing, China. Front Microbiol. 2015;6:1100. [crossref][PubMed]
57.
Deurenberg RH, Bathoorn E, Chlebowicz MA, Couto N, Ferdous M, García-Cobos S, et al. Application of next-generation sequencing in clinical microbiology and infection prevention. J Biotechnol. 2017;243:16-24. [crossref][PubMed]
58.
Tagini F, Greub G. Bacterial genome sequencing in clinical microbiology: A pathogen-oriented review. Eur J Clin Microbiol Infect Dis. 2017;36:2007-20. [crossref][PubMed]
59.
Ari S¸, Arikan M. Next-generation sequencing: Advantages, disadvantages, and future. In: Plant Omics: Trends and Applications. Springer; 2016. Pp. 109-35. [crossref]
60.
Tang P, Croxen MA, Hasan MR, Hsiao WW, Hoang LM. Infection control in the new age of genomic epidemiology. Am J Infect Control. 2017;45(2):170-79. [crossref][PubMed]
61.
Cummings LA, Kurosawa K, Hoogestraat DR, SenGupta DJ, Candra F, Doyle M, et al. Clinical next generation sequencing outperforms standard microbiological culture for characterizing polymicrobial samples. Clin Chem. 2016;62(11):1465-73. [crossref][PubMed]
62.
Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin Microbiol Infect. 2012;18(3):268-81. [crossref][PubMed]
63.
World Health Organization (2014). Antimicrobial Resistance: Global Report on Surveillance. [Internet]. Available from: https://www.who.int/iris/bitstream/1066 5/112642/1/9789241564748_eng.pdf?ua=1.
64.
CDC (2022). Antibiotic/Antimicrobial Resistance (AR/AMR). [Internet]. Available from: https://www.cdc.gov/drugresistance/biggest_threats.html.
65.
Shallcross LJ, Howard SJ, Fowler T, Davies SC. Tackling the threat of antimicrobial resistance: From policy to sustainable action. Philos Trans R Soc Lond B Biol Sci. 2015;370(1670):20140082. [crossref][PubMed]
66.
Gajdacs M. The concept of an ideal antibiotic: Implications for drug design. Molecules. 2019;24(5):892. [crossref][PubMed]
67.
Morita Y, Tomida J, Kawamura Y. Responses of Pseudomonas aeruginosa to antimicrobials. Front Microbiol. 2014;4:422. [crossref][PubMed]
68.
Sharma G, Rao S, Bansal A, Dang S, Gupta S, Gabrani R. Pseudomonas aeruginosa biofilm: Potential therapeutic targets. Biologicals. 2014;42(1):01-07. [crossref][PubMed]
69.
Pachori P, Gothalwal R, Gandhi P. Emergence of antibiotic resistance Pseudomonas aeruginosa in intensive care unit; A critical review. Genes Dis. 2019;6(2):109-19. [crossref][PubMed]
70.
Memar MY, Pormehrali R, Alizadeh N, Ghotaslou R, Baghi HB. Colistin, an option for treatment of multiple drug resistant Pseudomonas aeruginosa. Physiol Pharmacol. 2016;20:130-36.
71.
Lopez-Causape C, Cabot G, del Barrio-Tofino E, Oliver A. The versatile mutational resistome of Pseudomonas aeruginosa. Front Microbiol. 2018;9:685. [crossref][PubMed]
72.
Chaudhary AS. A review of global initiatives to fight antibiotic resistance and recent antibiotics’ discovery. Acta Pharm Sin B. 2016;6(6):552-56. [crossref][PubMed]
73.
Gajdacs M, Bátori Z, Ábrók M, Lázár A, Burián K. Characterization of resistance in gram-negative urinary isolates using existing and novel indicators of clinical relevance: A 10-year data analysis. Life (Basel). 2020;10(2):16. [crossref][PubMed]
74.
Ding J, Gao X, Gui H, Ding X, Lu Y, An S, et al. Proteomic analysis of proteins associated with inhibition of Pseudomonas aeruginosa resistance to imipenem mediated by the Chinese herbal Medicine Qi Gui Yin. Microb Drug Resist. 2021;27(4):462-70. [crossref][PubMed]
75.
Hassuna NA, Darwish MK, Sayed M, Ibrahem RA. Molecular epidemiology and mechanisms of high-level resistance to meropenem and imipenem in Pseudomonas aeruginosa. Infect Drug Res. 2020;13:285-93. [crossref][PubMed]
76.
Mirzaei B, Bazgir ZN, Goli HR, Iranpour F, Mohammadi F, Babaei R. Prevalence of multi-drug resistant (MDR) and extensively drug-resistant (XDR) phenotypes of Pseudomonas aeruginosa and Acinetobacter baumannii isolated in clinical samples from Northeast of Iran. BMC Res. Notes. 2020;13(1):380. [crossref][PubMed]
77.
Chevalier S, Bouffartigues E, Bodilis J, Maillot O, Lesouhaitier O, Feuilloley MGJ, et al. Structure, function and regulation of Pseudomonas aeruginosa porins. FEMS Microbiol Rev. 2017;41(5):698-722. [crossref][PubMed]
78.
Blair JMA, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJV. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol. 2015;13(1):42-51. [crossref][PubMed]
79.
Garneau-Tsodikova S, Labby KJ. Mechanisms of resistance to aminoglycoside antibiotics: Overview and perspectives. Medchemcomm. 2016;7(1):11-27. [crossref][PubMed]
80.
Olaitan AO, Morand S, Rolain JM. Mechanisms of polymyxin resistance: Acquired and intrinsic resistance in bacteria. Front Microbiol. 2014;5:e643. [crossref][PubMed]
81.
Dawoud TMS, Syed A, Maurya AK, Ahmad SS, Rabbani Q, Alyousef AA, et al. Incidence and antimicrobial profile of extended-spectrum β-lactamase producing gram-negative bacterial isolates: An in-vitro and statistical analysis. J Infect Public Health. 2020;13(11):1729-1733. Doi: 10.1016/j.jiph.2020.06.026. Epub 2020 Jul 23. PMID: 32712107 [crossref][PubMed]
82.
Kempf M, Rolain JM. Emergence of resistance to carbapenems in Acinetobacter baumannii in Europe: Clinical impact and therapeutic options. Int J Antimicrob Agents. 2012;39(2):105-14. [crossref][PubMed]
83.
Azuma M, Murakami K, Murata R, Kataoka K, Fujii H, Miyake Y, et al. Clinical significance of carbapenem-tolerant Pseudomonas aeruginosa isolated in the respiratory tract. Antibiotics. 2020;9(9):626. [crossref][PubMed]
84.
Hu YY, Cao JM, Yang Q, Chen S, Lv HY, Zhou HW, et al. Risk factors for carbapenem-resistant Pseudomonas aeruginosa, Zhejiang Province, China. Emerg Infect Dis. 2019;25(10):1861-67. [crossref][PubMed]
85.
Fowler RC, Hanson ND. Emergence of carbapenem resistance due to the novel insertion sequence ISPa8 in Pseudomonas aeruginosa. PLoS ONE. 2014;9(3):e91299. [crossref][PubMed]
86.
Sahuquillo-Arce JM, Hernández-Cabezas A, Yarad-Auad F, Ibanez-Martinez E, Falomir-Salcedo P, Ruiz-Gaitán A. Carbapenemases: A worldwide threat to antimicrobial therapy. World J Pharmacol. 2015;4(1):75-95. [crossref]
87.
Doi Y. Treatment options for carbapenem-resistant gram-negative bacterial infections. Clin Infect Dis. 2019;69(Suppl 7):S565-75. [crossref][PubMed]
88.
World Health Organization. Guidelines for the Prevention and Control of Carbapenem-Resistant Enterobacteriaceae, Acinetobacter baumannii and Pseudomonas aeruginosa in Health Care Facilities. Available online: https://www.who.int/infection-prevention/publications/guidelines-cre/en/. (Accessed on 20 May 2020).
89.
Elshafiee EA, Nader SM, Dorgham SM, Hamza DA. Carbapenem-resistant Pseudomonas aeruginosa originating from farm animals and people in Egypt. J Vet Res. 2019;63(3):333-37. [crossref][PubMed]
90.
Treepong P, Kos VN, Goyeux C, Blanc DS, Bertand X, Valot B, et al. Global emergence of the widespread Pseudomonas aeruginosa ST235 clone. Clin Microbiol Infect. 2017;24(3):258-66.[crossref][PubMed]
91.
Idowu T, Zhanel GG, Schwelzer FA. Dimer, but not monomer, of tobramycin potentiates ceftolozane against multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa and delays resistance development. Antimicrob Agents Chemother. 2020;64(3):e02055-19. [crossref][PubMed]
92.
Sarshar M, Behzadi P, Ambrosi C, Zagaglia C, Palamara AT, Scribano D. FimH and Anti-adhesive therapeutics: A disarming strategy against uropathogens. Antibiotics. 2020;9(7):397.[crossref][PubMed]

DOI and Others

DOI: 10.7860/JCDR/2024/67116.19060

Date of Submission: Aug 19, 2023
Date of Peer Review: Oct 13, 2023
Date of Acceptance: Jan 04, 2024
Date of Publishing: Feb 01, 2024

AUTHOR DECLARATION:
• Financial or Other Competing Interests: None
• Was informed consent obtained from the subjects involved in the study? NA
• For any images presented appropriate consent has been obtained from the subjects. NA

PLAGIARISM CHECKING METHODS:
• Plagiarism X-checker: Aug 19, 2023
• Manual Googling: Nov 23, 2023
• iThenticate Software: Jan 02, 2024 (11%)

ETYMOLOGY: Author Origin

EMENDATIONS: 6

JCDR is now Monthly and more widely Indexed .
  • Emerging Sources Citation Index (Web of Science, thomsonreuters)
  • Index Copernicus ICV 2017: 134.54
  • Academic Search Complete Database
  • Directory of Open Access Journals (DOAJ)
  • Embase
  • EBSCOhost
  • Google Scholar
  • HINARI Access to Research in Health Programme
  • Indian Science Abstracts (ISA)
  • Journal seek Database
  • Google
  • Popline (reproductive health literature)
  • www.omnimedicalsearch.com