Alveolar Rhabdomyosarcoma on the Left Maxillary Alveolus: A Unique Presentation

S. SUDHAKAR1, V. GEETHIKA2, NAGESWARA RAO3, B. SMITHA4, CH. SAI KIRAN5

ABSTRACT
Rhabdomyosarcomas (RMSs) are a group of soft-tissue malignant tumours. They derive from primitive skeletal muscle tissue with head and neck as its principle location. These tumours are extremely rare in adults and it is believed to have a different natural course, treatment response, and prognosis. The invasiveness of tumour, metastasis, lymph node involvement, and the age at diagnosis is a predictor of outcome in patients with RMC. Hence early recognition and histological sub-typing is of critical importance in the therapy of the disease. We report a rare case of RMC in a 50-year-old female patient involving the left maxillary alveolus with a detailed clinical, radiological, histopathological and immunohistochemical findings.

CASE REPORT
A 50-year-old female patient presented with a complaint of painful ulcer in the upper left back region of the jaw since 10 days. The patient gave a history of extraction of a mobile tooth in the same region a month ago in a private dental clinic. Following which she had noticed the painful ulcer in the extracted socket. The patient claimed that the pain was severe in intensity, continuous, radiates to the left side of the face and did not subside even after taking a country medication (nature of which not known). The medical and family histories were non-contributory to the complaint.

Extra oral examination showed mild tenderness over the left paranasal sinus region, other facial structures appeared normal and no regional lymph nodes were palpable. Intra oral examination revealed diffuse ulceration of the extraction socket in relation to 28, measuring approximately 1.5x1cm. The edge/margins of the ulcer appeared slightly everted and the floor contained a yellowish slough. The base of the ulcer was not palpable as it was confined within the extracted socket. The surrounding mucosa appeared normal and no secondary changes were observed.

Severe tenderness over the left faucial pillars and pharyngeal region was noticed. Considering the nature and extent of the lesion, a provisional diagnosis of non-healing ulcer of the extracted socket and a differential diagnosis of malignant ulcer was thought of.

A screening intra-oral periapical radiograph taken in relation to 28 showed missing 28 and complete loss of alveolar bone distal to 27 with destruction of maxillary tuberosity was noticed. Intra-oral examination revealed the growth extended mediolaterally from the midline of the palate to the buccal vestibule of the molars. Mucosa over the growth appears erythematous and yellowish slough was present. On palpation severe tenderness was noticed with indurated margins.

The orthopantomograph showed missing 26, 27 and 28 with complete destruction of bone distal to 25. Paranasal sinus view revealed normal sinus architecture. Computed tomography revealed presence of soft tissue density lesion measuring 5.0 x 3.5 cm involving the alveolar process of left maxilla extending into the adjacent pharyngeal mucosal space.

Keywords: Immunohistochemistry, Muscle tumour, Orthopantomograph

Staging:

Stage I: Localised disease
Stage II: Localised disease with regional lymph node involvement
Stage III: Localised disease with distant metastasis
Stage IV: Distant metastasis

The orthopantomograph showed missing 26, 27 and 28 with complete destruction of bone distal to 25. Paranasal sinus view revealed normal sinus architecture. Computed tomography revealed presence of soft tissue density lesion measuring 5.0 x 3.5 cm involving the alveolar process of left maxilla extending into the adjacent pharyngeal mucosal space.

Keywords: Immunohistochemistry, Muscle tumour, Orthopantomograph

Staging:

Stage I: Localised disease
Stage II: Localised disease with regional lymph node involvement
Stage III: Localised disease with distant metastasis
Stage IV: Distant metastasis

The orthopantomograph showed missing 26, 27 and 28 with complete destruction of bone distal to 25. Paranasal sinus view revealed normal sinus architecture. Computed tomography revealed presence of soft tissue density lesion measuring 5.0 x 3.5 cm involving the alveolar process of left maxilla extending into the adjacent pharyngeal mucosal space.

Keywords: Immunohistochemistry, Muscle tumour, Orthopantomograph

Staging:

Stage I: Localised disease
Stage II: Localised disease with regional lymph node involvement
Stage III: Localised disease with distant metastasis
Stage IV: Distant metastasis

The orthopantomograph showed missing 26, 27 and 28 with complete destruction of bone distal to 25. Paranasal sinus view revealed normal sinus architecture. Computed tomography revealed presence of soft tissue density lesion measuring 5.0 x 3.5 cm involving the alveolar process of left maxilla extending into the adjacent pharyngeal mucosal space.
tumours are more aggressive in adults when compared to children. RMS is very rare in adults. It accounts for 60% of tumour in children. The common t (1;13) variant is found in 10% of ARMS [2].

Various non-random chromosome alterations and recurrent reciprocal chromosomal translocations have been identified in RMS. A t (2;13) translocation is detected in 70% of ARMS (alveolar rhabdomyosarcoma); a less common t (1;13) variant is found in 10% of ARMS [2].

RMS is very rare in adults. It accounts for 60% of tumour in children and 2–5% occurs in adults [3]. It is generally believed that, these tumours are more aggressive in adults when compared to children.

DISCUSSION

RMS is a commonest mesenchymal malignant neoplasm seen in children. The peak age of incidence is between two to six years. Histopathology of RMS is analogous to myogenesis in the developing embryo, yielding clues to the biology of these lesions. Thus, RMS is considered as a tumour derived from primitive mesenchyme, exhibiting a profound tendency towards myogenesis than to define it as a cancer arising from skeletal muscle [1].

No clear etiologic factors have been identified to account for the occurrence of this malignant neoplasm. There are however increasing evidences which suggest that gene abnormalities may play a role in the development of RMS. Several non-random chromosome alterations and recurrent reciprocal chromosomal translocations have been identified in RMS. A t (2;13) translocation is detected in 70% of ARMS (alveolar rhabdomyosarcoma); a less common t (1;13) variant is found in 10% of ARMS [2].

Adult RMS shows different biological behaviour and an overall worse survival rate [4-6]. Clinical presentation of RMS is variable and influenced by site, age and the presence or absence of distant metastases. Intraorally, tongue is the most common site followed by the soft palate, hard palate, Buccal mucosa and gingiva [7-9]. Very rarely involvement of the masseter muscle has also been reported [10]. The presenting symptoms for rhabdomyosarcomas of the orofacial region include painful infiltrative growth of short duration, paresthesia, loss of teeth and trismus characterized by fast growth. Pain, proptosis, diplopia, strabismus, decreased hearing, nasal obstruction, dysphagia, cervical lymphadenopathy are other signs and symptoms. In the present case, the tumour initially was seen involving the extraction socket which rapidly infiltrated to the adjacent structures [11,12].

Radiological examination of the lesion may reveal the size and extension of the lesion and they usually show both the elements of bone remodelling and destruction. CT usually demonstrates a soft tissue mass that is isodense to muscle on unenhanced scans and frequently associate with bone erosion. On contrast enhanced CT, these tumours enhance moderately and homogenously. MR imaging include T1 signal intensity similar to muscle, T2 hyperintensity and heterogenous enhancement [13].

Horn and Enterline classified RMS histologically in four subtypes: embryonal, botryoid, alveolar, and pleomorphic. Histologically, the embryonal variety shows a mixture of spindle and undifferentiated round cells and immature striated muscle-like cells (rhabdomyoblasts) with abundant eosinophilic cytoplasm either tightly or loosely packed in a myxoid background. The Botryoid variant abuts an epithelial surface, with condensation of tumour cells in the immediate subepithelial zone. The alveolar variant has aggregates of round to oval neoplastic cells, separated by irregularly shaped fibrous trabeculae forming ill-defined alveolar spaces. The pleomorphic type contain large, atypical, polygonal, pleomorphic rhabdomyoblasts, which may be multinucleated.

Various immunohistochemical markers have been used to identify RMS. The markers include vimentin, myoglobin, desmin, muscle-specific actin, sarcomeric actin, smooth muscle actin, Myo D, ...
myogenin, troponin, S100 protein and cytokeratin [14]. In the present study, we used a panel of immunohistochemical markers and found positive expression for desmin, vimentin and a faint positivity for S-100 and cytokeratin cocktail.

RMS in adults is an aggressive tumour and has a higher incidence of recurrence. The best possible clinical outcome is therefore achieved via a multimodal approach [3]. Surgical resection followed by chemotherapy is the mainstay of therapy. RMS is a radiosensitive disease, but results in radiation-induced secondary tumours [15]. However, the cytotoxic actions of chemotherapeutic agents are not tumour-specific and are not effective in treating advanced and metastatic RMS.

The prognosis of RMS is determined by clinical staging, anatomical site, histology and age at the time of presentation [11]. On the basis of prognosis, RMS is classified into four groups [15]:
- Favorable prognosis: botryoid and spindle types
- Intermediate prognosis: embryonal
- Poor prognosis: alveolar and undifferentiated sarcomas
- Subtypes whose prognosis is not available: RMS with rhabdoid features

CONCLUSION

Adult ARMS is a rare presentation. As stated earlier, the prognosis of this variant is relatively poor, hence a thorough examination and proper utilization of the imaging modalities, histopathology and immunohistochemistry should be considered to accomplish a correct diagnosis. With regard to treatment, a combined therapeutic approach involving surgery, chemotherapy, and radiation therapy are known to dramatically improve the survival rates. However, lack of cooperation from the patient/family can have a negative impact on the outcome, as seen in our case.

REFERENCES

[13] Peter MS, Hugh DC eds. In Head and neck imaging. Elliot RF, Caroline DR, Patricia AH. Chapter: 30- Pediatric airway disease. 5th ed, mosby: St Louis; 2003 p 1892-94.

PARTICULARS OF CONTRIBUTORS:
1. Reader, Department of Oral Medicine & Radiology, St.Joseph Dental College & Hospital, Eluru, Andhra Pradesh, India.
2. Post Graduate Student, Department of Oral Medicine & Radiology, St.Joseph Dental College & Hospital, Eluru, Andhra Pradesh, India.
3. Post Graduate Student, Department of Oral Medicine & Radiology, St.Joseph Dental College & Hospital, Eluru, Andhra Pradesh, India.
4. Reader, Department of Oral Medicine & Radiology, St.Joseph Dental College & Hospital, Eluru, Andhra Pradesh, India.
5. Senior Lecturer, Department of Oral Medicine & Radiology, St.Joseph Dental College & Hospital, Eluru, Andhra Pradesh, India.

NAME, ADDRESS, E-MAIL ID OF THE CORRESPONDING AUTHOR:
Dr Sudhakar S.,
Reader, Department of Oral Medicine & Radiology, St. Joseph Dental College & Hospital, Eluru, Andhra Pradesh, India.
E-mail: drsudhakaroralmed@yahoo.co.in

FINANCIAL OR OTHER COMPETING INTERESTS: None.

Date of Submission: Sep 15, 2014
Date of Peer Review: Oct 09, 2014
Date of Acceptance: Jan 08, 2015
Date of Publishing: Feb 01, 2015