Journal of Clinical and Diagnostic Research, ISSN - 0973 - 709X

Users Online : 53960

AbstractMaterial and MethodsResultsDiscussionConclusionReferencesDOI and Others
Article in PDF How to Cite Citation Manager Readers' Comments (0) Audio Visual Article Statistics Link to PUBMED Print this Article Send to a Friend
Advertisers Access Statistics Resources

Dr Mohan Z Mani

"Thank you very much for having published my article in record time.I would like to compliment you and your entire staff for your promptness, courtesy, and willingness to be customer friendly, which is quite unusual.I was given your reference by a colleague in pathology,and was able to directly phone your editorial office for clarifications.I would particularly like to thank the publication managers and the Assistant Editor who were following up my article. I would also like to thank you for adjusting the money I paid initially into payment for my modified article,and refunding the balance.
I wish all success to your journal and look forward to sending you any suitable similar article in future"



Dr Mohan Z Mani,
Professor & Head,
Department of Dermatolgy,
Believers Church Medical College,
Thiruvalla, Kerala
On Sep 2018




Prof. Somashekhar Nimbalkar

"Over the last few years, we have published our research regularly in Journal of Clinical and Diagnostic Research. Having published in more than 20 high impact journals over the last five years including several high impact ones and reviewing articles for even more journals across my fields of interest, we value our published work in JCDR for their high standards in publishing scientific articles. The ease of submission, the rapid reviews in under a month, the high quality of their reviewers and keen attention to the final process of proofs and publication, ensure that there are no mistakes in the final article. We have been asked clarifications on several occasions and have been happy to provide them and it exemplifies the commitment to quality of the team at JCDR."



Prof. Somashekhar Nimbalkar
Head, Department of Pediatrics, Pramukhswami Medical College, Karamsad
Chairman, Research Group, Charutar Arogya Mandal, Karamsad
National Joint Coordinator - Advanced IAP NNF NRP Program
Ex-Member, Governing Body, National Neonatology Forum, New Delhi
Ex-President - National Neonatology Forum Gujarat State Chapter
Department of Pediatrics, Pramukhswami Medical College, Karamsad, Anand, Gujarat.
On Sep 2018




Dr. Kalyani R

"Journal of Clinical and Diagnostic Research is at present a well-known Indian originated scientific journal which started with a humble beginning. I have been associated with this journal since many years. I appreciate the Editor, Dr. Hemant Jain, for his constant effort in bringing up this journal to the present status right from the scratch. The journal is multidisciplinary. It encourages in publishing the scientific articles from postgraduates and also the beginners who start their career. At the same time the journal also caters for the high quality articles from specialty and super-specialty researchers. Hence it provides a platform for the scientist and researchers to publish. The other aspect of it is, the readers get the information regarding the most recent developments in science which can be used for teaching, research, treating patients and to some extent take preventive measures against certain diseases. The journal is contributing immensely to the society at national and international level."



Dr Kalyani R
Professor and Head
Department of Pathology
Sri Devaraj Urs Medical College
Sri Devaraj Urs Academy of Higher Education and Research , Kolar, Karnataka
On Sep 2018




Dr. Saumya Navit

"As a peer-reviewed journal, the Journal of Clinical and Diagnostic Research provides an opportunity to researchers, scientists and budding professionals to explore the developments in the field of medicine and dentistry and their varied specialities, thus extending our view on biological diversities of living species in relation to medicine.
‘Knowledge is treasure of a wise man.’ The free access of this journal provides an immense scope of learning for the both the old and the young in field of medicine and dentistry as well. The multidisciplinary nature of the journal makes it a better platform to absorb all that is being researched and developed. The publication process is systematic and professional. Online submission, publication and peer reviewing makes it a user-friendly journal.
As an experienced dentist and an academician, I proudly recommend this journal to the dental fraternity as a good quality open access platform for rapid communication of their cutting-edge research progress and discovery.
I wish JCDR a great success and I hope that journal will soar higher with the passing time."



Dr Saumya Navit
Professor and Head
Department of Pediatric Dentistry
Saraswati Dental College
Lucknow
On Sep 2018




Dr. Arunava Biswas

"My sincere attachment with JCDR as an author as well as reviewer is a learning experience . Their systematic approach in publication of article in various categories is really praiseworthy.
Their prompt and timely response to review's query and the manner in which they have set the reviewing process helps in extracting the best possible scientific writings for publication.
It's a honour and pride to be a part of the JCDR team. My very best wishes to JCDR and hope it will sparkle up above the sky as a high indexed journal in near future."



Dr. Arunava Biswas
MD, DM (Clinical Pharmacology)
Assistant Professor
Department of Pharmacology
Calcutta National Medical College & Hospital , Kolkata




Dr. C.S. Ramesh Babu
" Journal of Clinical and Diagnostic Research (JCDR) is a multi-specialty medical and dental journal publishing high quality research articles in almost all branches of medicine. The quality of printing of figures and tables is excellent and comparable to any International journal. An added advantage is nominal publication charges and monthly issue of the journal and more chances of an article being accepted for publication. Moreover being a multi-specialty journal an article concerning a particular specialty has a wider reach of readers of other related specialties also. As an author and reviewer for several years I find this Journal most suitable and highly recommend this Journal."
Best regards,
C.S. Ramesh Babu,
Associate Professor of Anatomy,
Muzaffarnagar Medical College,
Muzaffarnagar.
On Aug 2018




Dr. Arundhathi. S
"Journal of Clinical and Diagnostic Research (JCDR) is a reputed peer reviewed journal and is constantly involved in publishing high quality research articles related to medicine. Its been a great pleasure to be associated with this esteemed journal as a reviewer and as an author for a couple of years. The editorial board consists of many dedicated and reputed experts as its members and they are doing an appreciable work in guiding budding researchers. JCDR is doing a commendable job in scientific research by promoting excellent quality research & review articles and case reports & series. The reviewers provide appropriate suggestions that improve the quality of articles. I strongly recommend my fraternity to encourage JCDR by contributing their valuable research work in this widely accepted, user friendly journal. I hope my collaboration with JCDR will continue for a long time".



Dr. Arundhathi. S
MBBS, MD (Pathology),
Sanjay Gandhi institute of trauma and orthopedics,
Bengaluru.
On Aug 2018




Dr. Mamta Gupta,
"It gives me great pleasure to be associated with JCDR, since last 2-3 years. Since then I have authored, co-authored and reviewed about 25 articles in JCDR. I thank JCDR for giving me an opportunity to improve my own skills as an author and a reviewer.
It 's a multispecialty journal, publishing high quality articles. It gives a platform to the authors to publish their research work which can be available for everyone across the globe to read. The best thing about JCDR is that the full articles of all medical specialties are available as pdf/html for reading free of cost or without institutional subscription, which is not there for other journals. For those who have problem in writing manuscript or do statistical work, JCDR comes for their rescue.
The journal has a monthly publication and the articles are published quite fast. In time compared to other journals. The on-line first publication is also a great advantage and facility to review one's own articles before going to print. The response to any query and permission if required, is quite fast; this is quite commendable. I have a very good experience about seeking quick permission for quoting a photograph (Fig.) from a JCDR article for my chapter authored in an E book. I never thought it would be so easy. No hassles.
Reviewing articles is no less a pain staking process and requires in depth perception, knowledge about the topic for review. It requires time and concentration, yet I enjoy doing it. The JCDR website especially for the reviewers is quite user friendly. My suggestions for improving the journal is, more strict review process, so that only high quality articles are published. I find a a good number of articles in Obst. Gynae, hence, a new journal for this specialty titled JCDR-OG can be started. May be a bimonthly or quarterly publication to begin with. Only selected articles should find a place in it.
An yearly reward for the best article authored can also incentivize the authors. Though the process of finding the best article will be not be very easy. I do not know how reviewing process can be improved. If an article is being reviewed by two reviewers, then opinion of one can be communicated to the other or the final opinion of the editor can be communicated to the reviewer if requested for. This will help one’s reviewing skills.
My best wishes to Dr. Hemant Jain and all the editorial staff of JCDR for their untiring efforts to bring out this journal. I strongly recommend medical fraternity to publish their valuable research work in this esteemed journal, JCDR".



Dr. Mamta Gupta
Consultant
(Ex HOD Obs &Gynae, Hindu Rao Hospital and associated NDMC Medical College, Delhi)
Aug 2018




Dr. Rajendra Kumar Ghritlaharey

"I wish to thank Dr. Hemant Jain, Editor-in-Chief Journal of Clinical and Diagnostic Research (JCDR), for asking me to write up few words.
Writing is the representation of language in a textual medium i e; into the words and sentences on paper. Quality medical manuscript writing in particular, demands not only a high-quality research, but also requires accurate and concise communication of findings and conclusions, with adherence to particular journal guidelines. In medical field whether working in teaching, private, or in corporate institution, everyone wants to excel in his / her own field and get recognised by making manuscripts publication.


Authors are the souls of any journal, and deserve much respect. To publish a journal manuscripts are needed from authors. Authors have a great responsibility for producing facts of their work in terms of number and results truthfully and an individual honesty is expected from authors in this regards. Both ways its true "No authors-No manuscripts-No journals" and "No journals–No manuscripts–No authors". Reviewing a manuscript is also a very responsible and important task of any peer-reviewed journal and to be taken seriously. It needs knowledge on the subject, sincerity, honesty and determination. Although the process of reviewing a manuscript is a time consuming task butit is expected to give one's best remarks within the time frame of the journal.
Salient features of the JCDR: It is a biomedical, multidisciplinary (including all medical and dental specialities), e-journal, with wide scope and extensive author support. At the same time, a free text of manuscript is available in HTML and PDF format. There is fast growing authorship and readership with JCDR as this can be judged by the number of articles published in it i e; in Feb 2007 of its first issue, it contained 5 articles only, and now in its recent volume published in April 2011, it contained 67 manuscripts. This e-journal is fulfilling the commitments and objectives sincerely, (as stated by Editor-in-chief in his preface to first edition) i e; to encourage physicians through the internet, especially from the developing countries who witness a spectrum of disease and acquire a wealth of knowledge to publish their experiences to benefit the medical community in patients care. I also feel that many of us have work of substance, newer ideas, adequate clinical materials but poor in medical writing and hesitation to submit the work and need help. JCDR provides authors help in this regards.
Timely publication of journal: Publication of manuscripts and bringing out the issue in time is one of the positive aspects of JCDR and is possible with strong support team in terms of peer reviewers, proof reading, language check, computer operators, etc. This is one of the great reasons for authors to submit their work with JCDR. Another best part of JCDR is "Online first Publications" facilities available for the authors. This facility not only provides the prompt publications of the manuscripts but at the same time also early availability of the manuscripts for the readers.
Indexation and online availability: Indexation transforms the journal in some sense from its local ownership to the worldwide professional community and to the public.JCDR is indexed with Embase & EMbiology, Google Scholar, Index Copernicus, Chemical Abstracts Service, Journal seek Database, Indian Science Abstracts, to name few of them. Manuscriptspublished in JCDR are available on major search engines ie; google, yahoo, msn.
In the era of fast growing newer technologies, and in computer and internet friendly environment the manuscripts preparation, submission, review, revision, etc and all can be done and checked with a click from all corer of the world, at any time. Of course there is always a scope for improvement in every field and none is perfect. To progress, one needs to identify the areas of one's weakness and to strengthen them.
It is well said that "happy beginning is half done" and it fits perfectly with JCDR. It has grown considerably and I feel it has already grown up from its infancy to adolescence, achieving the status of standard online e-journal form Indian continent since its inception in Feb 2007. This had been made possible due to the efforts and the hard work put in it. The way the JCDR is improving with every new volume, with good quality original manuscripts, makes it a quality journal for readers. I must thank and congratulate Dr Hemant Jain, Editor-in-Chief JCDR and his team for their sincere efforts, dedication, and determination for making JCDR a fast growing journal.
Every one of us: authors, reviewers, editors, and publisher are responsible for enhancing the stature of the journal. I wish for a great success for JCDR."



Thanking you
With sincere regards
Dr. Rajendra Kumar Ghritlaharey, M.S., M. Ch., FAIS
Associate Professor,
Department of Paediatric Surgery, Gandhi Medical College & Associated
Kamla Nehru & Hamidia Hospitals Bhopal, Madhya Pradesh 462 001 (India)
E-mail: drrajendrak1@rediffmail.com
On May 11,2011




Dr. Shankar P.R.

"On looking back through my Gmail archives after being requested by the journal to write a short editorial about my experiences of publishing with the Journal of Clinical and Diagnostic Research (JCDR), I came across an e-mail from Dr. Hemant Jain, Editor, in March 2007, which introduced the new electronic journal. The main features of the journal which were outlined in the e-mail were extensive author support, cash rewards, the peer review process, and other salient features of the journal.
Over a span of over four years, we (I and my colleagues) have published around 25 articles in the journal. In this editorial, I plan to briefly discuss my experiences of publishing with JCDR and the strengths of the journal and to finally address the areas for improvement.
My experiences of publishing with JCDR: Overall, my experiences of publishing withJCDR have been positive. The best point about the journal is that it responds to queries from the author. This may seem to be simple and not too much to ask for, but unfortunately, many journals in the subcontinent and from many developing countries do not respond or they respond with a long delay to the queries from the authors 1. The reasons could be many, including lack of optimal secretarial and other support. Another problem with many journals is the slowness of the review process. Editorial processing and peer review can take anywhere between a year to two years with some journals. Also, some journals do not keep the contributors informed about the progress of the review process. Due to the long review process, the articles can lose their relevance and topicality. A major benefit with JCDR is the timeliness and promptness of its response. In Dr Jain's e-mail which was sent to me in 2007, before the introduction of the Pre-publishing system, he had stated that he had received my submission and that he would get back to me within seven days and he did!
Most of the manuscripts are published within 3 to 4 months of their submission if they are found to be suitable after the review process. JCDR is published bimonthly and the accepted articles were usually published in the next issue. Recently, due to the increased volume of the submissions, the review process has become slower and it ?? Section can take from 4 to 6 months for the articles to be reviewed. The journal has an extensive author support system and it has recently introduced a paid expedited review process. The journal also mentions the average time for processing the manuscript under different submission systems - regular submission and expedited review.
Strengths of the journal: The journal has an online first facility in which the accepted manuscripts may be published on the website before being included in a regular issue of the journal. This cuts down the time between their acceptance and the publication. The journal is indexed in many databases, though not in PubMed. The editorial board should now take steps to index the journal in PubMed. The journal has a system of notifying readers through e-mail when a new issue is released. Also, the articles are available in both the HTML and the PDF formats. I especially like the new and colorful page format of the journal. Also, the access statistics of the articles are available. The prepublication and the manuscript tracking system are also helpful for the authors.
Areas for improvement: In certain cases, I felt that the peer review process of the manuscripts was not up to international standards and that it should be strengthened. Also, the number of manuscripts in an issue is high and it may be difficult for readers to go through all of them. The journal can consider tightening of the peer review process and increasing the quality standards for the acceptance of the manuscripts. I faced occasional problems with the online manuscript submission (Pre-publishing) system, which have to be addressed.
Overall, the publishing process with JCDR has been smooth, quick and relatively hassle free and I can recommend other authors to consider the journal as an outlet for their work."



Dr. P. Ravi Shankar
KIST Medical College, P.O. Box 14142, Kathmandu, Nepal.
E-mail: ravi.dr.shankar@gmail.com
On April 2011
Anuradha

Dear team JCDR, I would like to thank you for the very professional and polite service provided by everyone at JCDR. While i have been in the field of writing and editing for sometime, this has been my first attempt in publishing a scientific paper.Thank you for hand-holding me through the process.


Dr. Anuradha
E-mail: anuradha2nittur@gmail.com
On Jan 2020

Important Notice

Reviews
Year : 2022 | Month : May | Volume : 16 | Issue : 5 | Page : LE01 - LE09 Full Version

Machine Learning Models in Prediabetes Screening: A Systematic Review


Published: May 1, 2022 | DOI: https://doi.org/10.7860/JCDR/2022/53411.16385
Azmawati Mohammed Nawi, Puteri Sofia Nadira Megat Kamaruddin, Nor Rumaizah Mohd Nordin, Sharifah Saffinas Syed Soffian, Mazni Baharom

1. Associate Professor, Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Wilayah Persekutuan Kuala Lumpur, Malaysia. 2. Postgraduate, Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Wilayah Persekutuan Kuala Lumpur, Malaysia. 3. Postgraduate, Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Wilayah Persekutuan Kuala Lumpur, Malaysia. 4. Postgraduate, Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Wilayah Persekutuan Kuala Lumpur, Malaysia. 5. Postgraduate, Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Wilayah Persekutuan Kuala Lumpur, Malaysia.

Correspondence Address :
Azmawati Mohammed Nawi,
Associate Professor, Department of Community Health, Faculty of Medicine, Cheras, Wilayah Persekutuan Kuala Lumpur, Malaysia.
E-mail: azmawati@ppukm.ukm.edu.my

Abstract

Introduction: The increasing prevalence of type 2 Diabetes Mellitus (DM) can be done from identifying those with prediabetes and offer early interventions by utilising prescreening diagnostic tools. Machine learning algorithms and big data mining approaches have been postulated for predictive disease modelling in hospital and clinical settings.

Aim: To outline the relative performance accuracies in predicting prediabetes conditions in different machine learning algorithms.

Materials and Methods: A systematic literature search was conducted at Universiti of Kebangsaan, Kuala Lumpur, Malaysia, based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) review protocol, and the research question was formulated based on the keywords of “Prediabetes” (Population), “Internet of Things” and “prediction model” (Intervention) and “screening” and “risk” (Outcome). International Prospective Register of Systematic Reviews (PROSPERO) registration (CRD42021264947) was done and databases were screened on 10th-24th June 2021 via Web of Science, Scopus, PubMed, Ovid and EBSCOhost. Inclusion criteria was English language prediction studies published between 2011-2021. Review articles, editorials, proceedings, commentary articles and articles not focusing on prediabetes were excluded. The quality of the articles was ranked via the Prediction Model Risk of Bias Assessment Tool (PROBAST).

Results: A total of five articles that were published in 2014-2021 were included. The sample sizes ranged from 570 to 24,331 participants. Three studies (South Korea, United State of America (USA), Japan) suggested the applicability of the screening score prediction models for use in clinical settings related to personalised risk assessment and targeted interventions, with the predictors used being suitable for either the clinic or hospital. The simplicity of gender, age, Body Mass Index (BMI), blood pressure and waist circumference as predictors suggested that they can be utilised by the community.

Conclusion: This review highlights the fact that the heterogeneity of the population used and validation issues may affect generalisation. Future studies should address these concerns to guide advocacy among healthcare providers in clinical practice as well as in data and expertise sharing for developing and validating urgently needed prediabetic prediction models.

Keywords

Artificial intelligence, Detection, Impaired glucose tolerance, Internet of things, Predevelopment diabetes, Prediction model, Risk

Diabetes Mellitus is one of the world’s most serious public health problems, causing premature death and imposing a heavy global disease burden. It is among the top ten causes of death, causing an estimated 1.5 million deaths globally in 2019 (1). The overall global burden of diabetes has increased significantly and will continue to rise in the next few decades. There was an increment of 102.9% in the global incidence of diabetes from 11.3 million in 1990 to 22.9 million in 2017. Global Diabetes-Associated Disability Adjusted Life Years (DALYs) increased by 116.7% from 32.3 million in 1990 to 70.4 million in 2019 (2). In 2021, an estimated 537 million adults had diabetes, and almost half (240 million) of them were undiagnosed (3). The prevalence of diabetes is predicted to rise to 570.9 million in 2025 and to 693 million in 2045 (2),(4). If this particular concern remains undetected and undiagnosed, it will be left untreated. Furthermore, it can lead to potential complications such as heart disease, kidney disease, diabetic retinopathy and neuropathy. The complications of DM impose significant adverse health impacts and economic burdens on countries and their healthcare systems (5).

Prediabetes is a condition where blood glucose levels are higher than normal but below the diabetes threshold (Fasting Plasma Glucose (FPG) ≥7.8 and <11.1 mmol/L) (6). It is an intermediate stage between DM and normal glucose tolerance and is defined either as impaired fasting blood glucose or Impaired Glucose Tolerance (IGT) (7). It is regarded as a high risk condition, with a high likelihood of progressing to diabetes (8). Annually, approximately 5-10% of people with prediabetes develop diabetes; however, the conversion rates vary depending on the definition of prediabetes and the population characteristics (9),(10). In 2017, an estimated 7.7% of the world population (374 million) had IGT, and this number is expected to increase to 587 million (equal to 8.4%) in 2045 (4). It has been established that lifestyle modifications and pharmaceutical interventions reduce the incidence of diabetes by an average of 20% relative risk reduction (11). Thus, one strategy for addressing the increasing prevalence of type 2 DM is to identify those with prediabetes and offer such interventions.

Risk assessment tools can be designed to predict the likelihood of a particular health outcome based on a person’s attributes and risk factors. By allowing screening to be focused on people at the highest risk, risk assessment tools aid optimisation of the resources necessary for identifying illnesses, which are typically limited (12). Thus, risk assessment tools are useful for identifying people with prediabetes who may benefit from intervention, with many advocating them as the first stage in a screening programme (13). Prescreening diagnostic tools have enabled clinicians to make better judgments and diagnose patients more quickly (14). Any delay in disease detection might result in irreversible complications, such as blindness in diabetic retinopathy or end-stage renal failure in diabetic nephropathy (15). Given the extensive screening and diagnosis processes required to protect the population from a variety of serious illnesses, certain healthcare sectors may be experiencing a shortage of diagnostic experts. As a result, computer assisted technology can be used to aid in the prescreening process, resulting in improved diagnosis and prognosis.

Machine learning is an area of artificial intelligence research that tries to learn from past experiences and uses tools such as statistics, probabilistic and optimisation algorithms for classifying newly input data (16). Previously, a powerful statistical analysis such as multivariate regression or correlation analysis was effective for constructing models by linearly combining the relevant variables (17). However, the digitisation of medical records has resulted in a wealth of multidimensional data being stored in health databases. It represents a unique opportunity for advanced machine learning approaches to pattern recognition and prediction (18). Unlike the traditional statistical method, machine learning methods use a wide range of parameters such as Boolean logic, absolute restriction, conditional probabilities, and unconventional optimisation methods for classification, nearly resembling that of a human being. Although most machine learning approaches draw concepts from statistics and probability, it has become a more powerful classification tool because it can generate a decision or inference from a dataset that conventional statistical techniques cannot (19).

Numerous machine learning techniques have been applied in clinical settings for the purpose of disease prediction, and have demonstrated a higher diagnostic accuracy than conventional methods (19). Support Vector Machines (SVM), Artificial Neural Networks (ANN), Naïve Bayes algorithm and Random Forest (RF) are widely used machine learning approaches in disease risk prediction (20). Machine learning algorithms and big data mining approaches have improved diabetes screening and prediction (21),(22). Given the increased applicability and effectiveness of machine learning algorithms for predictive disease modeling in hospital and clinical settings, we discovered little research that provides a complete evaluation of published publications that used machine learning algorithms for predicting prediabetes (23). Therefore, this review is aimed at outlining the relative performance accuracies of different machine learning algorithms in predicting prediabetes conditions.

Material and Methods

The present systematic review was initiated at Universiti of Kebangsaan Malaysia, Kuala Lumpur, Malaysia and guided by the PRISMA review protocol (24). A systematic literature search was conducted and registered under PROSPERO (CRD42021264947) and can be retrieved at https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021264947 (25). The PRISMA protocol aims to prompt researchers to source the right information with an accurate level of detail. Based on this protocol, we started the systematic literature review by formulating the appropriate research question. The systematic search consisted of three main sub-processes: identification, screening, inclusion.

Research question formulation: Here, the formulation of the research question was based on Patient/Population, Intervention, Comparison and Outcomes (PICO), a tool that aids authors in developing a suitable research question for a review. It is based on three main concepts: Population or problem, interest or intervention, and context or comparison and outcome (26). Based on these concepts, the three main aspects included in the review were prediabetes (population), the Internet of Things and prediction models (intervention) and screening and risk (outcome), which guided the formulation of the main research objective.

Systematic Search Strategy

The three main processes in the systematic search strategy were identification, screening and inclusion.

Identification: The identification process involved searching for any synonyms, Medical Subject Heading (MeSH) terms, related terms and variation of the main keywords: prediabetes, Internet of Things, prediction model, screening and risk (Table/Fig 1). This process provided greater coverage for finding related articles in the selected databases (Web of Science, Scopus, PubMed, Ovid, EBSCOhost) for the literature search, which was conducted within two weeks (10th-24th June 2021). Some of the distinct features of these databases were a large collection of literature and advanced search functions. We obtained 776 articles from the databases used; 28 duplicates were found and removed. The process returned 750 articles, and two articles were added from other sources, which were citations searching from the reference list of the initial included articles.

Screening: The 750 articles were screened with each database’s sorting function. The article inclusion criteria were: journal article, written in English, published in 2011-2021, observational and interventional study with qualitative or quantitative data. We excluded systematic reviews, comments or letters to the editor, abstracts from conferences, animal studies and in vivo or in vitro studies. Two teams of two or three authors independently screened the studies for inclusion. If there was disagreement at any stage, discussion leading to a consensus was made by a third author from the other team. We excluded 705 articles due to irrelevant population, intervention or outcome.

Eligibility for inclusion: The eligibility process was aimed at selecting the articles that fulfilled the study objective and was based on reading the article title and abstract. About 45 articles were manually sorted articles that satisfied the outcome of usage or development of machine learning models in prediabetes screening. Studies not related to the interest and intended outcome were excluded. Via this process, 36 articles were excluded based on irrelevant intervention, i.e., utilising only regression analysis; incomplete measures of effects on outcome; and predicting other than the prediabetes population, for example, metabolic syndrome, gestational diabetes and diabetes. In the final eligibility process, only five articles were included (Table/Fig 2) (27),(28),(29),(30),(31).

Data Extraction and Analysis

Thematic analysis was used in the present systematic review because it is considered in synthesising and integrating mixed research designs (32). Thematic analysis is a descriptive analysis that allows data to be merged with other data analysis techniques (33). The selected five articles were read in detail, especially the abstract, method, results and discussion sections. Then, the data were extracted based on whether the study was able to answer its own research questions, and the findings were simplified as tabulated in (Table/Fig 3) (27),(28),(29),(30),(31). Only after these lengthy processes thematic analysis was done. To generate relevant themes, each author identified patterns of extracted data from the reviewed articles and grouped them before successfully categorising them into different themes of screening tool in regards to practicality, usability, generalisation, missing data and validation. The themes accuracy, usefulness and accurate data representation were re-reviewed. The developed themes were then submitted to a group of panel experts well versed in systematic reviews and in public health related research. The panel expert group subsequently agreed on the themes generated as being appropriate and accurate to the results of the review.

Quality Appraisal

The quality of the final list of studies was ranked according to the PROBAST to facilitate an objective assessment of the Risk Of Bias (ROB) and relevance of studies that established, validated or latest prediction models for individualised predictions in a focused and transparent manner (34). The PROBAST was recently developed by a steering group that considered existing ROB tools and reporting guidelines and was informed by a delphi procedure involving 38 experts, and refined through piloting (34). In the present study, the teams extracted data from all included studies and assessed the ROB. If there was disagreement at any stage, discussion leading to a consensus was made by a third author from the other team. We performed qualitative analysis and appraisal of the included articles by extracting all relevant information using a predesigned standardised data extraction form. PROBAST is organised into the following four domains: participants, predictors, outcome, and analysis of different types of prediction studies, i.e., development or validation or both.

The PROBAST has a total of 20 key questions to help with the classification of ROB as low, high or unclear, and includes signalling questions to help make judgements. Signalling questions are rated as yes, probably yes, probably no, no or no information. Finally, overall judgement was made about the ROB and concerns regarding the applicability of the prediction model evaluation across all assessed domains (Table/Fig 4).

Results

Five articles were included in this review and had been published in 2014-2021. The sample sizes of the studies ranged from 570 to 24,331 participants. Four studies were from Asia: South Korea, Japan, Qatar and China. Only one study was from North America, i.e., the USA. The types of machine learning involved were Artificial Neural Network (ANN), Support Vector Machine (SVM), Reverse Engineering Forward Simulation (REFS), XGboost (XGB), RF, Gradient Boosting Machine (GBM), Deep Learning (DL) and GA-XGBT. All studies involved the development of prediction models for prediabetes screening. Three studies used the prediabetes definition based on American Diabetes Association guidelines, while the other two studies used different sets of definitions pertaining to their own country (South Korea and China). The differing units used and ranges resulted in slightly lower thresholds for FPG. Using PROBAST, all five studies had low ROB.

Study population and databases: The largest data set was obtained retrospectively for 2007-2012 from the electronic health records of the Humedica database on US adults, whereby 24,331 adults without type 1 diabetes were entered in the database with blood glucose in the low risk range (normoglycaemic) (28). This was followed by the study from Japan, which analysed data from comprehensive medical check-ups (2006-2017) involving 9,906 healthy office workers without serious diabetes or advanced renal failure and who were aged 40-60 years (29). The study from Qatar reported the clinical, anthropometric and demographic data of 7,386 people aged between 18 to 86 years from the Qatar Biobank, which has been collecting data from the general population since 2012, from which participants with Body Mass Index (BMI) <18.5 kg/m2 were excluded (30). The South Korean study used data from the 2010 Korean National Health and Nutrition Examination Survey (KNHANES) involving 4,685 participants, excluding participants with diabetes, and involved South Korean adults aged 51-54 years (27). Lastly, the study from China used 2011-2019 data from Shuguang hospital affiliated with Shanghai university of traditional chinese medicine, comprising 570 prediabetic participants aged 57-68 years (31).

Validation and missing data: Three studies performed internal validation using the same database, and it was either ten fold cross-validation or five fold cross validation (29),(30),(31). The study from the USA performed external validation using datasets that were not from the Humedica database (28). The South Korean study performed both internal (10 fold cross validation) and external validation using 2011 KNHANES data (27). Regarding management of missing data, two studies excluded missing data (27),(29) and two studies used imputation (28),(30). The study from China did not mention missing data (31).

ROC accuracy and applicability of machine learning in different settings: Three studies suggested the applicability of the screening score prediction models for use in clinical applications related to personalised risk assessment and targeted interventions (27),(28),(29). The South Korean study used age, gender, family history of diabetes, alcohol intake, BMI, waist circumference, FPG and systolic and diastolic blood pressure as predictors in the ANN and SVM models, which showed Areas Under the Curve (AUC) of 0.768 and 0.761, respectively (27). Anderson JP et al., reported an AUC of 0.72 for its REFS, which used age, BMI, HDL, triglycerides, alanine transaminase, CRP and body temperature as predictors (28). In 2018, using a complete oral glucose tolerance test profile that consisted of one-hour plasma glucose, one-hour immunoreactive insulin, two-hour plasma glucose and two-hour immunoreactive insulin, reported AUC of 0.75-0.78 for the two XGboost models, which outperformed the logistic regression model (29). Given the predictors used, these three machine learning algorithms are suitable for clinic and hospital settings.

The study from China used tongue image data sets, which consisted of deep feature, colour and texture feature and fusion of features. The authors reported that the GA_XGBT had an AUC of 0.93 (colour and texture feature), 0.816 (deep feature) and 0.914 (fusion of features) for predicting prediabetes (31). Using tongue image datasets was only applicable to clinical application in hospital settings, due to the fact that tongue images need to be collected by specially trained researchers using specialised machines (31).

Gender, age, BMI, blood pressure and waist circumference were used as predictors in DL, GBM, XGB and RF, and AUC of 0.81 were observed from all four approaches. Moreover, the study from Qatar reported that these four machine learning approaches did not outperform the logistic regression model (30). Due to their simplicity, the authors used gender, age, BMI, blood pressure and waist circumference as predictors, suggesting that other than the clinical setting, they can also be utilised by the community (general public) (16).

Discussion

To the best of our knowledge, this is the first systematic review of the machine learning model approach used for screening people with prediabetes. The inclusion criteria were established in order to identify individuals who would benefit from interventions aimed at early detection and prevention of DM.

The machine learning based prediabetes risk score model provides an alternative screening tool that is inexpensive and simple to administer to people who appear to be healthy in the general population (35),(36). Compared to the traditional screening method of IGT testing, the prediction model incorporates other modifiable risk factors such as body temperature, smoking habit, BMI, tongue image information, blood pressure and waist circumference, which does not require any additional procedure and is non invasive (28),(30),(31),(35). The implication is reflected in the convenience and practicality for further increasing early detection strategies in population-based settings.

Despite the high accuracy of the prediabetes prediction models identified in the present review, their usability in the clinical field is an important issue to be considered. The application of the prediction models at tertiary healthcare centres requires the attention of clinical experts as in the case of tongue feature (31), imposing additional resources and cost for screening purposes. Not withstanding, implementing an artificial intelligence model with standardised equipment for collecting and interpreting information may not be cost-effective in the overwhelmed hospital setting. In contrast, routine clinical measures are preferred and more practicable for aiding mass screening in the population.

With the expansion of electronic health records, more robust and advanced computational approaches such as machine learning have become the focus of disease prediction research (20),(37). The supervised machine learning model considers complex nonlinear relationships between dependent and independent variables of multiple data types (38). The unique characteristic of an ANN includes a black box at the centre of the decision-making processes. However, it has been argued that the same machine learning model may produce results with varying degrees of accuracy for the same dataset based on the selection of different underlying parameters (35),(39). The high precision generates exclusive terms for specific populations, thus posing challenges to generalisation across different settings.

In general, the characteristics of the data used for developing the prediction models were well described; however, a few models sampled specific databases according to employment status and tertiary healthcare centres rather than population-based sampling (29),(31). Recruitment through specific databases is likely to result in a non representative population and hence should be avoided (40),(41). Future use of such prediction models should be approached cautiously, as the outcome will be accurate only for screening in a similar group of people.

Furthermore, it is imperative that model development studies clearly explain the treatment of missing data (38),(39),(42). The majority of the prediction model developers analysed in the present review opted to exclude missing data rather than use imputation to assign plausible values to fit in (29),(31),(43). Multiple imputation produces more valid results and better discrimination compared to excluding missing data upon integration into the model because it accounts for the average values of the parameters used within a model, hence reading through the trends (20),(44). By including the missing data, a prediction model justifies the true real world population characteristics.

Validation of the prediction model is crucial for evaluating the discrimination ability and calibration to support the stability of the suggested model (20). External validation, regarded as the gold standard, should be performed prior to considering a prediction tool for use in the real world setting (37),(41). However, only two of the studies included in the present review reported on external validation. Whereas the prediction model ensembles performed reasonably well in predicting prediabetes, with AUC ranging between 0.72 and 0.93, critical observations should be made during replication in other study populations for potential bias.

Evaluating the application of the prediction model in clinical practice is vital before proceeding with advocacy activities (40),(45). All of the articles included in this review discussed the subsequent impact on healthcare practises, highlighting the importance of a greater emphasis on model use prior to development. Based on personalised risk assessment, the healthcare provider can plan more targeted interventions tailored to the person’s need (28),(29),(30). With the growing nature of electronic health information data-keeping, prediction models using machine learning provide better usability for the healthcare provider to stratify patients according to different risk factors.

The prediction models for prediabetes reviewed here incorporate the computational approach, utilising big data for model development. Big data enables greater insight into information on the real world population, hence the representativeness. The factor variables used in the model development accurately measure a specific individual characteristic, which is based on routine clinical parameters used in healthcare settings.

Limitation(s)

There are limited studies on the development of prediction models for prediabetes and machine learning to date, thus, it is difficult to assess the superiority of one model over another. In the present review, prediction models derived from certain populations, particularly high-income countries, may not be applicable to other populations with different regional settings due to the distinctive genetic makeups and socio-economic backgrounds.

Conclusion

Prediction model studies on prediabetes are available and appear to show good accuracy outcomes. However, this review highlights the fact that the heterogeneity of the population used and validation issues may affect generalisation. Future studies should address these concerns to guide advocacy among healthcare providers. While the clinical data measured vary widely between prediction studies, a comparison is only possible when a common dataset benchmark is established. Therefore, there is an urgent need for data and expertise sharing for developing and validating prediabetic prediction models.

Author contributions: All authors contributed to the design and implementation of the research, analysis of the results and writing of the manuscript.

References

1.
World Health Organization Dashboard available from https://www.who.int/news-room/fact-sheets/detail/diabetes accessed on 18th September 2021.
2.
Lin X, Xu Y, Pan X, Xu J, Ding Y, Sun X, et al. Global, regional, and national burden and trend of diabetes in 195 countries and territories: An analysis from 1990 to 2025. Scientific Reports. 2020;10(14790). Doi: https://doi.org/10.1038/s41598-020-71908-9. [crossref] [PubMed]
3.
International Diabetes Federation. Diabetes Facts & Figures. 2021. Available from: https://idf.org/aboutdiabetes/what-is-diabetes/facts-figures.html#:#:~:text=The%20IDF%20Diabetes%20Atlas%20Tenth,and%20783%20million%20by%202045. Accessed on 20th October 2021.
4.
Cho NH, Shaw JE, Karuranga S, Huang Y, Fernandes JDdR, Ohlrogge AW, et al. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Research and Clinical Practice. 2018;138:271-81. Doi: https://doi.org/10.1016/j.diabres.2018.02.023. [crossref] [PubMed]
5.
Meetoo D. Diabetes: Complications and the economic burden. British Journal of Healthcare Management. 2014;20(2). Doi: https://doi.org/10.12968/bjhc.2014.20.2.60. [crossref]
6.
Bansal N. Prediabetes diagnosis and treatment: A review. World Journal of Diabetes. 2015;6(2):296-303. Doi: https://doi.org/10.4239/wjd.v6.i2.296. [crossref] [PubMed]
7.
American Diabetes Association Dashboard. Available from: https://www.diabetes.org/a1c/diagnosis. Accessed on 20th October 2021.
8.
Tabák AG, Herder C, Rathmann W, Brunner EJ, Kivimäki M. Prediabetes: A high-risk state for diabetes development. Lancet. 2012;379(9833):2279-90. Doi: https://doi.org/10.1016/s0140-6736(12)60283-9. [crossref]
9.
Forouhi NG, Luan J, Hennings S, Wareham NJ. Incidence of Type 2 diabetes in England and its association with baseline impaired fasting glucose: The Ely study 1990-2000. Diabetic Medicine. 2007;24(2):200-07. Doi: https://doi.org/10.1111/j.1464-5491.2007.02068.x. [crossref] [PubMed]
10.
Nathan DM, Davidson MB, DeFronzo RA, Heine RJ, Henry RR, Pratley R, et al. Impaired fasting glucose and impaired glucose tolerance: Implications for care. Diab Care. 2007;30(3):753-59. Doi: https://doi.org/10.2337/dc07-9920. [crossref] [PubMed]
11.
Sheng Z, Cao JY, Pang YC, Xu HC, Chen JW, Yuan JH, et al. Effects of lifestyle modification and anti-diabetic medicine on prediabetes progress: A systematic review and meta-analysis. Frontiers in Endocrinology. 2019;10:01-15. Doi: https://doi.org/10.3389/fendo.2019.00455. [crossref] [PubMed]
12.
Khunti K, Gillies CL, Taub NA, Mostafa SA, Hiles SL, Abrams KR, et al. A comparison of cost per case detected of screening strategies for Type 2 diabetes and impaired glucose regulation: modelling study. Diabetes Research and Clinical Practice. 2012;97(3):505-13. Doi: https://doi.org/10.1016/j.diabres.2012.03.009. [crossref] [PubMed]
13.
Gray LJ, Willis A, Webb D, Davies MJ, Khunti K. Screening for diabetes and prediabetes. In: Bonora E, DeFronzo R, editors. Diabetes epidemiology, genetics, pathogenesis, diagnosis, prevention, and treatment. Cham: Springer International Publishing; 2018. Pp. 1-33. [crossref]
14.
Kumar U. Applications of machine learning in disease prescreening. In: Edoh T, Pawar P, Mohammad S, editors. Prescreening systems for early disease prediction, detection, and prevention: IGI Global; 2019. Pp. 278-320. [crossref]
15.
Roche MM, Wang PP. Factors associated with a diabetes diagnosis and late diabetes diagnosis for males and females. Journal of Clinical and Translational Endocrinology. 2014;1(3):77-84. Doi: https://doi.org/10.1016/j.jcte.2014.07.002. [crossref] [PubMed]
16.
Mitchell T. Machine Learning. 1st ed. United States of America: McGraw-Hill Education. 1997:344-50.
17.
Heltberg A, Andersen JS, Sandholdt H, Siersma V, Kragstrup J, Ellervik C. Predictors of Undiagnosed prevalent type 2 diabetes- The Danish general suburban population study. Primary Care Diabetes. 2018;12(1):13-22. Doi: https://doi.org/10.1016/j.pcd.2017.08.005. [crossref] [PubMed]
18.
Prabhu LAJ, Sengan S, Kamalam GK, Vellingiri J, Gopal J, Velayutha P, et al. Medical information retrieval systems for e-Health care records using fuzzy based machine learning model. Microprocessors and Microsystems. 2020;2020:103344. Doi: https://doi.org/10.1016/j.micpro.2020.103344. [crossref]
19.
Kumar U. Applications of Machine Learning in Disease Prescreening. 2018. Doi: 10.4018/978-1-5225-7131-5.ch010. [crossref]
20.
Uddin S, Khan A, Hossain ME, Moni MA. Comparing different supervised machine learning algorithms for disease prediction. BioMed Central Medical Informatics and Decision Making. 2019;19:01-16. Doi: https://doi.org/10.1186/s12911-019-1004-8. [crossref] [PubMed]
21.
Kavakiotis I, Tsave O, Salifoglou A, Maglaveras N, Vlahavas I, Chouvarda I. Machine learning and data mining methods in diabetes research. Computational and Structural Biotechnology Journal. 2017;15:104-16. Doi: https://doi.org/10.1016/j.csbj.2016.12.005. [crossref] [PubMed]
22.
Marcos Lopez DP. Advances in Financial Machine Learning. 1st ed. Hoboken, New Jersey: John Wiley & Sons, Inc. 2018:246-55.
23.
Cahn A, Shoshan A, Sagiv T, Yesharim R, Goshen R, Shalev V, et al. Prediction of progression from pre-diabetes to diabetes: Development and validation of a machine learning model. Diabetes/Metabolism Research and Reviews. 2019;36(2):e3252. Doi: https://doi.org/10.1002/dmrr.3252. [crossref]
24.
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. British Medical Journal. 2021;372:n71. Doi: https://doi.org/10.1136/bmj.n71. [crossref] [PubMed]
25.
Mohd Nordin NR, Mohamed Nawi A, Kamaruddin PSNM, Baharom M, Soffian SSS. Machine learning models in pre-diabetes screening: A systematic review. PROSPERO 2021 [Available from: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021264947.
26.
Pollock A, Berge E. How to do a systematic review. International Journal of Stroke. 2018;13(2):138-56. Doi: https://doi.org/10.1177/1747493017743796. [crossref] [PubMed]
27.
Choi SB, Kim WJ, Yoo TK, Park JS, Chung JW, Lee Yh, et al. Screening for prediabetes using machine learning models. Computational and Mathematical Methods in Medicine. 2014;2014:618976. Doi: https://doi.org/10.1155/2014/618976. [crossref] [PubMed]
28.
Anderson JP, Parikh JR, Shenfeld DK, Ivanov V, Marks C, Church BW, et al. Reverse engineering and evaluation of prediction models for progression to type 2 diabetes: An application of machine learning using electronic health records. Journal of Diabetes Science and Technology. 2016;10(1):06-18. Doi: https://doi.org/10.1177/1932296815620200. [crossref] [PubMed]
29.
Maeta K, Nishiyama Y, Fujibayashi K, Gunji T, Sasabe N, Iijima K, et al. Prediction of glucose metabolism disorder risk using a machine learning algorithm: Pilot study. Journal of Medical Internet Research Diabetes. 2018;3(4):e10212. Doi: https://doi.org/10.2196/10212. [crossref] [PubMed]
30.
Abbas M, Mall R, Errafii K, Lattab A, Ullah E, Bensmail H, et al. Simple risk score to screen for prediabetes: A cross-sectional study from the Qatar Biobank cohort. Journal of Diabetes Investigation. 2021;12(6):988-97. Doi: https://doi.org/10.1111/jdi.13445. [crossref] [PubMed]
31.
Li J, Yuan P, Hu X, Huang J, Cui L, Cui J, et al. A tongue features fusion approach to predicting prediabetes and diabetes with machine learning. Journal of Biomedical Informatics. 2021;115. Doi: https://doi.org/10.1016/j.jbi.2021.103693. [crossref] [PubMed]
32.
Flemming K, Booth A, Garside R, Tunçalp Ö, Noyes J. Qualitative evidence synthesis for complex interventions and guideline development: Clarification of the purpose, designs and relevant methods. British Medical Journal Global Health. 2019;4(Suppl 1):e000882. Doi: https://doi.org/10.1136/bmjgh-2018-000882. [crossref] [PubMed]
33.
Vaismoradi M, Turunen H, Bondas T. Content analysis and thematic analysis: Implications for conducting a qualitative descriptive study. Nursing & Health Sciences. 2013;15(3):398-405. Doi: https://doi.org/10.1111/nhs.12048. [crossref] [PubMed]
34.
Wolff RF, Moons KGM, Riley RD, Whiting PF, Westwood M, Collins GS, et al. PROBAST: A tool to assess the risk of bias and applicability of prediction model studies. Annals of Internal Medicine. 2019;170:51-58. Doi: https://doi.org/10.7326/M18-1376. [crossref] [PubMed]
35.
Quan J, Ng CS, Kwok HHY, Zhang A, Yuen YH, Choi CH, et al. Development and validation of the CHIME simulation model to assess lifetime health outcomes of prediabetes and type 2 diabetes in Chinese populations: A modeling study. PLOS Medicine. 2021;18(6):e1003692. Doi: https://doi.org/10.1371/journal.pmed.1003692. [crossref] [PubMed]
36.
Liberty IA, Kodim N. Assess prediabetes risk, as a golden period for prevention of diabetes. Asian Journal of Pharmaceutical and Clinical Research. 2017;10(6):349-53. Doi: https://doi.org/10.22159/ajpcr.2017.v10i6.18215. [crossref]
37.
Wynants L, Calster BV, Collins GS, Riley RD, Heinze G, Schuit E, et al. Prediction models for diagnosis and prognosis of COVID-19: Systematic review and critical appraisal. British Medical Journal. 2020:369. Doi: https://doi.org/10.1136/bmj.m1328. [crossref] [PubMed]
38.
Gurusamy V, Kannan S, Nandhini K. The real time big data processing framework advantages and limitations. International Journal of Computer Sciences and Engineering. 2017;5(12):305-12. Doi: https://doi.org/10.26438/ijcse/v5i12.305312. [crossref]
39.
Barber SR, Davies MJ, Khunti K, Gray LJ. Risk assessment tools for detecting those with pre-diabetes: A systematic review. Diabetes Research and Clinical Practice. 2014;105(1):01-13. Doi: https://doi.org/10.1016/j.diabres.2014.03.007. [crossref] [PubMed]
40.
Hong D, Fort D, Shi L, Price-Haywood EG. Electronic medical record risk modeling of cardiovascular outcomes among patients with type 2 diabetes. Diabetes Therapy. 2021. Doi: https://doi.org/10.1007/s13300-021-01096-w. [crossref] [PubMed]
41.
Xue M, Su Y, Li C, Wang S, Yao H. Identification of potential type ii diabetes in a large-scale chinese population using a systematic machine learning framework. Journal of Diabetes Research. 2020;2020:6873891. Doi: https://doi.org/10.1155/2020/6873891. [crossref] [PubMed]
42.
Choi SB, Lee W, Yoon JH, Won JU, Kim DW. Ten-year prediction of suicide death using Cox regression and machine learning in a nationwide retrospective cohort study in South Korea. Journal of Affective Disorders. 2018;231:08-14. Doi: https://doi.org/10.1016/j.jad.2018.01.019. [crossref] [PubMed]
43.
Chung JW, Kim WJ, Choi SB, Park JS, Kim DW. Screening for pre-diabetes using support vector machine model. Computational and Mathematical Methods in Medicine. 2014:2471-75. Doi: https://doi.org/10.1109/EMBC.2014.6944123. [crossref] [PubMed]
44.
Fujiati II, Damanik HA, Bachtiar A, Nurdin AA, Ward P. Development and validation of prediabetes risk score for predicting prediabetes among Indonesian adults in primary care: Cross-sectional diagnostic study. Interventional Medicine and Applied Science. 2017;9(2):76-85. Doi: https://doi.org/10.1556/1646.9.2017.18. [crossref] [PubMed]
45.
Man B, Schwartz A, Pugach O, Xia Y, Gerber B. A clinical diabetes risk prediction model for prediabetic women with prior gestational diabetes. PLOS One. 2021;16(6):e0252501. Doi: https://doi.org/10.1371/journal.pone.0252501. [crossref] [PubMed]

DOI and Others

DOI: 10.7860/JCDR/2022/53411.16385

Date of Submission: Nov 23, 2021
Date of Peer Review: Jan 08, 2022
Date of Acceptance: Feb 23, 2022
Date of Publishing: May 01, 2022

AUTHOR DECLARATION:
• Financial or Other Competing Interests: None
• Was Ethics Committee Approval obtained for this study? NA
• Was informed consent obtained from the subjects involved in the study? NA
• For any images presented appropriate consent has been obtained from the subjects. NA

PLAGIARISM CHECKING METHODS:
• Plagiarism X-checker: Nov 22, 2021
• Manual Googling: Feb 22, 2022
• iThenticate Software: Mar 22, 2022 (18%)

ETYMOLOGY: Author Origin

JCDR is now Monthly and more widely Indexed .
  • Emerging Sources Citation Index (Web of Science, thomsonreuters)
  • Index Copernicus ICV 2017: 134.54
  • Academic Search Complete Database
  • Directory of Open Access Journals (DOAJ)
  • Embase
  • EBSCOhost
  • Google Scholar
  • HINARI Access to Research in Health Programme
  • Indian Science Abstracts (ISA)
  • Journal seek Database
  • Google
  • Popline (reproductive health literature)
  • www.omnimedicalsearch.com