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ABSTRACT
Context: This study presents a longitudinal simulation of 
disease screening at a variety of different test sensitivities. 

Aims: It is demonstrated that the difference between the 
performance of high quality tests and poor quality tests are 
relatively small in terms of the commonly used longitudinally 
measured disease detection rate. 

Statistical Analysis: This simulation study is focused on the 
screening of patients at high-risk for breast cancer and thus 

used plausible rates of new cases of disease and initial disease 
prevalence for this population.

Results and Conclusions: The effects of varying the rate at 
which the disease enters the population and the initial disease 
prevalence is also discussed and was determined to not affect 
this study’s conclusions regarding the inappropriateness of the 
use of the longitudinally measured disease detection rate for 
the evaluation of screening technologies.

 
Jacob Levman

InTROduCTIOn
Treatment of a patient’s disease often hinges on its initial identification. 
Scientists have developed a wide variety of tests for the detection 
of various diseases entities. After the benefits of a test have been 
demonstrated, it may become adopted as a standard diagnostic 
method for identifying disease entities in patients. Newer more sensitive 
methods must prove themselves through rigorous scientific analysis in 
order to compete with the established detection method and perhaps 
become part of the standard screening process. Experimental 
techniques are evaluated by having them examine a cross-section 
of the population and are compared with the performance of the 
mainstream detection method. Scientists then look to see whether 
any test improvements are obtained with the new disease detection 
method. If this type of experiment proves promising, longer-term and 
typically more expensive longitudinal studies are performed where 
both the original method and the new testing method are used to 
monitor two groups for a particular disease over many years.

A common technique for evaluating a detection method involves 
comparing its disease detection rate after years in a longitudinal 
study with the long-term disease detection rate produced by 
standard screening methods. If a substantial improvement in 
the long-term detection rate is observed, then scientists can be 
confidant in the improved performance of the new screening method 
over the existing technique. However, it is possible for scientists to 
conclude that a new detection method provides little to no benefit 
if its long-term disease detection rates are similar to the long-term 
detection rates of the pre-existing established screening method, 
a conclusion that is not necessarily valid and could lead to the 
dismissal of new beneficial disease detection technologies.

This paper presents simulation data that demonstrates why 
the disease detection rate is not an appropriate mechanism for 
evaluating a disease detection method after years in a longitudinal 
study. Correctly analyzing the results of a screening test is critical 
to selecting the most appropriate disease detection method.

mATeRIAl And meThOdS
A simulation study was performed in order to compare the 
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performance of disease screening tests of widely varying sensitivities 
over the course of a 10-year longitudinal study. The resultant 
prevalence of disease in the population and the number of cases 
of disease caught in each year of a 10-year longitudinal analysis 
is tracked with changes in the test sensitivity. The cumulative 
number of cases of disease caught is also tracked along with 
the cumulative disease detection rate for each year of a 10-year 
longitudinal analysis. This study assigns the initial prevalence of 
disease in the population being screened. The amount of disease 
caught in a given year is defined by the following equation:

  Dc (t) = Dp (t) x S  (1)

Where, 

Dc  is the amount of disease caught in a given year.

S is the sensitivity of the test (varied from 50 to 100%).

t is the time of screening in years (varied from 1 to 10).

Dp (t) is the disease prevalent in the population, defined as:

  Dp (1) = Sp x P1

 Dp (t) = Dp (t-1) - Dc (t-1) + Sp x Ep (2)

Where,

Sp  is the size of the population being screened.

P1  is the initial prevalence of disease in the population screened 
(%).

Ep  is the annual rate of new cases of disease (%).

The cumulative disease caught, Dcum (t) is computed as in equation 
3 and the cumulative disease detection rate is computed as in 
equation 4.

  t

 Dcum(t) = ∑ Dc (t)   (3)
  1

 Drcum (t) = Dcum (t)  (4)

         
t

For this simulation study, the size of the population being screened 
(Sp) by a test with any given sensitivity was set to 10,000 patients. 
The initial disease prevalence (P1) was set to 5%. The annual rate 
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dISCuSSIOn
The results presented demonstrate that after years in a longitudinal 
analysis, the disease detection rates are nearly the same regardless 
of test sensitivity. However, higher sensitivities are associated with 
decreases in the prevalence of disease in the population screened. 
The implication is that a test with an improved sensitivity will reduce 
the prevalence of the disease in a screened population, however, 
it should not be expected to substantially increase the disease 
detection rate after years in a longitudinal analysis. Thus, comparing 
disease detection rates after years in a longitudinal analysis can be 
an unacceptable method for evaluating a new disease detection 
technology. [Table/Fig-2] and 4 demonstrate that even at low 
sensitivities (50%), it is possible for the total tumours detected to 
approach the results produced by a perfect test (100% sensitivity) 
after years in a longitudinal analysis. [Table/Fig-2] demonstrates 
that regardless of sensitivity variations from 50 to 100%, each test 
converges to be detecting the same number of cases of disease in 
a given year (the rate at which the disease enters the population). 
[Table/Fig-3] illustrates why after years in a longitudinal analysis, 

of new disease cases was set to 1% per year. Rates of disease 
prevalence and incidence vary greatly between disease entities 
and populations studied, however, these example rates were 
selected to provide simple values that are realistic in the context 
of screening high-risk breast cancer patients. Women with BRCA 
mutations have a 50-85% lifetime risk of developing breast cancer, 
making a 1% annualized rate a plausible value for this simulation 
study. Studies that have screened a population of women at 
elevated risk have reported finding cancer in 3-9% of patients as 
part of Magnetic Resonance Imaging (MRI) clinical studies [1-4]. 
For this simulation study an initial disease prevalence of 5% was 
selected as a potentially realistic value, however, the effects of 
varying the number of patients, the initial disease prevalence and 
the rate at which disease enters the population is addressed in 
the discussion. This simulation study compares the results of 
enacting a disease screening program on this population with 
disease detection methods at a variety of sensitivities (50, 60, 70, 
80, 90 and 100%). The sensitivities used in this study are ideal 
in that the assigned test sensitivity is applied uniformly to the 
diseased population regardless of disease progression. In reality, 
screening tests tend to have higher sensitivities for disease in a 
more advanced state of progression and lower sensitivities for 
earlier stage disease entities. This study shortcoming is addressed 
in more detail in the Discussion.

ReSulTS
The prevalence of disease in the population analyzed is provided 
in [Table/Fig-1]. Note that with a rate of new disease of 1% 
per year, the population of 10,000 produces 100 new cases of 
disease each year. The prevalence of disease in the population is 
provided for each of 50, 60, 70, 80, 90 and 100% sensitivities. The 
number of cases of disease detected is tracked over the 10-year 
period with changes to the test sensitivities and the results are 
provided in [Table/Fig-2]. The cumulative cases of disease caught 
is provided in [Table/Fig-3]. The disease detection rate based on 
the cumulative cases of disease from [Table/Fig-3], normalized 
by the length of time of the analysis is provided in [Table/Fig-4]. 
The cumulative disease detection rate for a second simulation 
with a very high rate of new disease entering the population (30% 
annually) is provided in [Table/Fig-5].

[Table/Fig-1]: Prevalence of Disease in Simulation Study over a 10-year
Longitudinal Analysis

[Table/Fig-2]: Disease Detected in Simulation Study over a 10-year
Longitudinal Analysis

[Table/Fig-3]: Cumulative Disease Caught over a 10-year Longitudinal
Analysis

[Table/Fig-4]: Cumulative Disease Detection Rate over a 10-year
Longitudinal Analysis

[Table/Fig-5]: Cumulative Disease Detection Rate over a 10-year
Longitudinal Analysis (rate at which new disease enters the population:
30%)
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the disease detection rate would make a poor measure for the 
performance of a screening test. When we compare a perfect test 
(100% sensitivity) with a poor test (50% sensitivity) we can see on 
[Table/Fig-3] that in the first year of screening the poor test has 
only half the disease detection rate of the perfect test. However, by 
the 10th year of screening, the poor test with only 50% sensitivity 
has caught 92.8% of the disease caught by the perfect test. 
When we evaluate a test based on the disease detection rate, the 
apparent performance difference between a great test and a poor 
one narrows as the years of longitudinal analysis progress [Table/
Fig-4].

If a pre-existing imperfect test is in place which produces long-
term disease detection rates close to the rate at which the disease 
enters the population, then a newer perfect test will not substantially 
improve the long-term disease detection rates as measured in a 
longitudinal analysis. Evaluating a screening technology based on 
its long-term disease detection rate could lead scientists to dismiss 
the benefits of a higher performing test, simply because a newer 
test with an improved sensitivity cannot substantially outperform 
the old test in terms of the long-term disease detection rate. 

Consider a pre-existing test with a true sensitivity of 80% (this is 
an oversimplification for demonstrative purposes as real tests tend 
to have a variable sensitivity based on the state of progression of 
the disease in the patient). The odds of this idealized test missing 
a given instance of disease in one round of screening is 20%. The 
probability of missing that particular instance of disease 3 years 
in a row is 0.23=0.008. This corresponds to a 0.8% chance of 
missing the disease 3 years in a row. Thus, it is almost guaranteed 
that a test with a true sensitivity of 80% will catch a given instance 
of disease within 3 years-a period of time that is much shorter than 
the length of a typical longitudinal analysis. As such, it is possible 
for an under-performing test to reach a disease detection rate close 
to the rate at which the disease enters the population which is well 
illustrated in [Table/Fig-2 and 4]. Over the course of a longitudinal 
analysis, a test with a true sensitivity of 80% is liable to catch the 
vast majority of the disease prevalent in the population, however, 
it will often catch that disease later on in its development than 
the perfect test would have. Even if we are introducing a perfect 
test, substantial improvements in the long-term disease detection 
rate over established screening methods may be impossible to 
obtain.

It should be noted that the sensitivities of disease detection 
methods quoted in the literature typically are not true sensitivities 
in the strictest sense of the word. We typically don’t know how 
much undetected disease is prevalent in the population screened 
and thus don’t typically know the true sensitivity of any given test. 
Since, an imperfect test can produce disease detection rates 
close to the rate at which the disease enters the population, the 
introduction of a new perfect screening method may produce no 
noticeable improvement in the test’s long-term disease detection 
rates as measured in a longitudinal analysis. This does not mean 
that the perfect test is not providing any benefit over the pre-existing 
imperfect test: in its first year of use, the perfect test catches all 
instances of the disease that would have otherwise been missed 
by the pre-existing screening methodology. Thus, the new perfect 
test eliminates missed disease and thus lowers the prevalence of 
the disease in the population being monitored, as is illustrated in 
[Table/Fig-1]. The new perfect test is also liable to catch disease 
earlier on in its development, which hopefully translates into easier 
and more successful treatments for the patient.

A lack of improved long-term disease detection rates via a new 
more sensitive screening method can be used as justification 
to limit research on technologies used in longitudinal studies 
that actually reduced the amount of undetected disease in the 
population. A lack of appropriate interpretation of the longitudinally 
measured disease detection rate can prevent the introduction of 

new more sensitive testing methods and thus be a barrier for 
patients receiving the highest quality care.

Dr. Nishikawa and Lorenzo Pesce previously presented the 
idea that long-term detection rates in longitudinal studies are 
not necessarily a good way to compare detection methods in 
the context of performing screening for breast cancer via X-ray 
mammography with and without the help of computer-aided 
detection technologies [5]. Multiple longitudinal studies comparing 
screening with and without computer-aided detection technologies 
reported a lack of a substantial increase in the long-term detection 
rate of cancers [6-8], however, cross-sectional studies comparing 
screening with and without computer-aided detection technologies 
showed substantial increases in the detection rate (from 5 to 20%) 
[9-14]. This implies that the computer-aided detection methods 
are effective in removing undetected cancers from the population 
being monitored even though long-term cancer detection rates 
are largely unchanged.

It has been pointed out more recently that this effect might apply 
to the screening of breast cancer in the contralateral breast with 
MRI after an initial diagnosis of cancer [15, 16]. Solin et al., also 
reported equal long-term cancer detection rates when comparing 
MRI based screening of the contralateral breast with traditional 
X-ray mammography after a longitudinal analysis of 8 years [17]. 
This has been used as an argument that MRI is providing little 
benefit [18], even though it is known to be sensitive to cancers 
that are occult (not visible) on X-ray mammography [2-4]. Catching 
disease earlier often leads to easier treatments on the patient and 
higher survival rates, improvements that are potentially obtainable 
with new screening technologies that do not increase the long-
term detection rate for the disease over pre-existing methods.

Varying the number of patients included in the study has no real 
effect other than to scale the numbers of disease cases detected.  
Increasing or decreasing the initial prevalence of the disease does 
not affect this paper’s conclusions regarding the longitudinally 
measured disease detection rate being an inappropriate mechanism 
to evaluate a screening technique. Decreasing the rate at which 
the disease enters the population increases the effects described 
regarding the long-term disease detection rate (poor tests and 
perfect tests have nearly identical detection rates). Increasing the 
rate at which the disease enters the population helps decrease 
the effects described regarding the long-term disease detection 
rate. However, it should be noted that even at the epidemic level 
of 30% of the population acquiring a disease annually, after 10 
years in a longitudinal analysis, a test with a sensitivity of 50% will 
yield a cumulative disease detection rate of 90% that produced 
by a perfect test. This is demonstrated in [Table/Fig-5] in which 
the simulation was repeated with an initial prevalence of 30% 
and 30% of the population acquiring the disease each year. The 
conclusion that the longitudinally measured disease detection 
rate is a potentially misleading evaluative metric appears to hold 
regardless of variations in the initial disease prevalence or the rate 
at which the disease enters the population.

Metrics that are recommended for the evaluation of disease 
screening methods include the resultant mortality rate from the 
disease. An additional appropriate evaluative metric is to look for 
an increase in the rate of detection of earlier stages of disease 
when comparing screening methods. Screening techniques can 
also be compared based on patient outcomes after the first round 
of screening (so as to eliminate disease entities caught in the first 
round of screening that could/would have been caught had the 
screening method being evaluated been applied to the patient 
earlier).

This study’s main shortcoming is the assumption of having tests 
with a fixed sensitivity that does not change with the state of 
disease progression. Normally a disease detection method’s 
sensitivity will vary with the state of disease progression, providing 
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a higher sensitivity for advanced states of breast cancer and a 
much lower sensitivity for very early stage tumours. Future work 
will look at modeling this effect and demonstrating that this study’s 
conclusions are valid even in situations where the test’s sensitivity 
is variable based on the state of the disease.

COnCluSIOn
In this study, it was demonstrated that the longitudinally measured 
disease detection rate can be an inappropriate metric for the 
evaluation of a disease screening method. This paper presented 
a longitudinal simulation study of disease screening at a variety of 
different test sensitivities. It was demonstrated that the difference 
between the longitudinally measured disease detection rates of 
a high quality test with 100% sensitivity and a poor quality test 
with 50% sensitivity are relatively small. A simulation study was 
performed to evaluate the potential effects of screening a high-
risk breast cancer population. This simulation analysis clearly 
demonstrates that the longitudinally measured disease detection 
rate can be an unreliable mechanism for evaluating a disease 
screening technology.
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