Auditing Analgesic Use in Post-operative Setting in a Teaching Hospital

SUMANA SEN¹, PRAPTI BATHINI¹

ABSTRACT
Introduction: Managing postoperative pain efficiently is one important therapeutic challenge in the hospitals. Combination use of analgesics is in vogue, where in drugs from the opioid and non-opioid group are given synergistically. The aim of this study is to audit the use of different analgesics on the first postoperative day. Effort has been made to look into the drug or drug combinations used and other factors associated with their use.

Materials and Methods: Retrospective, cross sectional observational study was conducted over a period of 11 months in a tertiary care teaching hospital at Hyderabad with approval from institutional ethics committee. Medical records of 649 patients on the first postoperative day were analysed for analgesics by various indicators.

INTRODUCTION
Post operative pain is one of the end results of any surgical procedure and calls for efficient management. It is the commonest therapeutic challenge in the hospitals.

Pain has been defined as, ‘an unpleasant sensory and emotional experience associated with actual or potential tissue damage’ by the Task Force on Taxonomy of the International Association for the Study of Pain [1]. Optimising pain management can improve the outcome of patient care after any surgical intervention. Inadequate pain control can result in increased morbidity and length of hospital stay as well as lead to chronic pain. It can also lead to complications like deep vein thrombosis, atelectasis and also delayed wound healing [2]. The other concern in inadequate pain relief is the fear of the possibility of development of physical dependence, tolerance and addiction with the use of opioid analgesics [3]. Undertreated severe pain may have physiological consequences increasing the stress response to surgery, seen as a cascade of endocrine-metabolic and inflammatory events that ultimately may contribute to organ dysfunction, morbidity, increased hospital stay and mortality. It may lead to several complications related to major systems like cardiovascular, respiratory, gastrointestinal, musculoskeletal, thromboembolic and also psychological [4]. Besides, restlessness caused by severe pain may contribute to postoperative hypoxemia [5].

Opium and its semisynthetic and synthetic derivatives have come up to be the most effective analgesics in immediate postoperative period [6]. A combination modality of opioid and non opioid analgesics are also used nowadays. The World Federation of Societies of Anesthesiologists (WFSA) has devised ‘Analgesic Ladder’ to treat acute pain [7]. According to this ladder, immediately after operation, the pain can be expected to be severe and may need controlling with strong parenteral opioids in combination with local anesthetic blocks and peripherally acting drugs. Normally, postoperative pain should decrease with time and the need for drugs to be given by injection should cease. There is then a step down to oral opioids and finally to non-steroidal anti-inflammatory drugs (NSAIDs) and acetaminophen on its own [8]. As the feeling of pain is subjective, the requirement of different class of analgesics may differ. Analgesics with a better safety profile and having less toleration, dependence and abuse potential should be used. The goal of effective pain management is to provide relief/satisfaction to patients, expedite recovery and functional ability, reduce morbidity and minimize hospital stay. The concept of ‘multimodal analgesia’ advocates the use of several different classes of analgesics and different routes of administration which can produce a synergistic action. This also helps to reduce the effective doses of the individual drugs and their adverse effects. Not many Indian studies have focused solely on analgesic utilization pattern nor has highlighted the different aspects of multimodal analgesia.

The aim of this study is to study the use of different analgesics on the first postoperative day and also to find out the combination use of non steroidal anti-inflammatory drugs (NSAIDs) and opioid group of analgesics. Apart from that it also looks into the commonest route of their administration and whether they are from the NLEM as given by Central Drugs Standard Control Organization (CDSCO), India.

MATERIALS AND METHODS
This retrospective observational study was conducted by the department of Pharmacology in collaboration with Surgery and allied Departments of a tertiary care teaching hospital at Hyderabad, India. Prior approval was taken from institutional ethics committee. Data was collected from medical records of postoperative patients from various departments like general surgery, gynaecology/obstetrics, orthopaedics, urology, etc. diagnosed with any surgical procedure in a period of 11 months in a tertiary care teaching hospital at Hyderabad. The data was collected during the time period from April 2012 to March 2013.

Drugs were classified as: Opioids: morphine, pentazocine, nalbuphine, fentanyl, tramadol, piritramide, and meperidine. Non-Opioids: paracetamol, ibuprofen, diclofenac, metamizol, and ketoprofen. Adjuvants; Gabapentin, naproxen, ketorolac.

The present study gives an idea of the overall pattern of analgesic drug use in postoperative patients. The drug combinations used, the most common single use drug can be made out. The health professionals can be encouraged to prescribe by generic name and from the National List of Essential Medicines NLEMs.

RESULTS
Average number of drugs per encounter was 4.23. Percentage of patients prescribed drugs from national essential drug list/WHO was 81.94%. Most common analgesic (monotherapy) prescribed was tramadol followed by diclofenac and the most common combination drugs prescribed were tramadol+Paracetamol. The most common route of administration was intravenous. All the drugs except piroxicam, were in the lower limit of the recommended daily dose.

CONCLUSION
The present study gives an idea of the overall pattern of analgesic drug use in postoperative patients. The drug combinations used, the most common single use drug can be made out. The health professionals can be encouraged to prescribe by generic name and from the National List of Essential Medicines NLEMs.

Keywords: Analgesic utilization study, Diclofenac, Postoperative pain, Tramadol

ophthalmology, ENT, urology and orthopaedics only. Patients undergoing emergency surgery psychologically disabled and from extreme age groups were excluded. The study period was from 10/1/2011 to 15/11/2011. Medical records of 649 patients were audited for the first postoperative day and a proforma was devised to gather the required information. Complete patient demographics and the type of surgery were recorded. Principle mode of analgesia, the routes of administration and other co-administered analgesics were noted. The data collected from the medical records was analyzed and expressed as absolute numbers and/or percentages.

RESULTS
Six hundred forty nine medical records of patients were audited.

Demographics Results (numbers)

<table>
<thead>
<tr>
<th>Age(years) mean ± SD</th>
<th>49.12 ± 9.35</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (kg) mean ± SD</td>
<td>61.25 ± 11.04</td>
</tr>
<tr>
<td>Male (number)</td>
<td>356</td>
</tr>
<tr>
<td>Female (number)</td>
<td>293</td>
</tr>
<tr>
<td>General surgery</td>
<td>232</td>
</tr>
<tr>
<td>Gynaecology / obstetrics</td>
<td>176</td>
</tr>
<tr>
<td>Urology</td>
<td>47</td>
</tr>
<tr>
<td>ENT</td>
<td>53</td>
</tr>
<tr>
<td>Ophthalmology</td>
<td>43</td>
</tr>
<tr>
<td>Orthopaedics</td>
<td>98</td>
</tr>
</tbody>
</table>

The mean age and weight of the patients were 49 years and 61 kg respectively. 356 were male and 293 were female patients. The highest number of cases was from the Department of General Surgery, followed by Gynaecology and Obstetrics [Table/Fig-1]. The commonly encountered surgical procedures were appendectomy, inguinal hernia repair, Caesarean section, and abscess drainage (breast, perineal, mastoid). The other procedures were cholecystectomy, cataract operation, hydrocele repair, ureteric calculi removal and orthopedic procedures [Table/Fig-2].

One hundred and seventy three (26.64%) patients received an opioid analgesic and two hundred and thirty six received a non steroidal anti-inflammatory analgesic (36.36%). In the above situation, both the drugs were administered as sole analgesic agent. Parenteral synthetic opioid tramadol was used in 25.26% and non opioid analgesic diclofenac was used in 24.5% of patients as analgesic monotherapy [Table/Fig-3].

The combination use (opioid + non opioid or two nonopioids or two opioids) was observed in 340 cases (36.97%). The commonly used drug combinations were tramadol + paracetamol (8.62%), diclofenac + paracetamol (7.85%), aceclofenac + paracetamol (6.93%) and tramadol + pentazocine (7.09%). Others noted were ibuprofen + paracetamol (3.08%), tramadol + diclofenac [Table/Fig-4] (2.62%), tramadol + ibuprofen (0.31%) and ibuprofen + aceclofenac (0.46%).

Prescribing frequency of analgesics

Prescribing pattern of analgesics is depicted above [Table/Fig-4]. The prescribed daily dose (PDD) and the recommended or defined daily dose (RDD) of the analgesics are shown above [Table/Fig-3]. The RDD is the average maintenance dose per day in adult for it’s prime indication. The PDD is the average dose of a particular analgesic prescribed in the study [9-11]. The analgesic used maximally as monotherapy is also shown below [Table/Fig-4].

Prescribing pattern of analgesics

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Indicators assessed</th>
<th>Data value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Average number of analgesics per prescription</td>
<td>1.39</td>
</tr>
<tr>
<td>2</td>
<td>Percentage of drugs prescribed by generic name</td>
<td>4.83%</td>
</tr>
<tr>
<td>3</td>
<td>Percentage of patients on analgesics from National List of Essential Medicines (NLEM)</td>
<td>81.94%</td>
</tr>
<tr>
<td>4</td>
<td>Most common analgesic prescribed</td>
<td>Tramadol</td>
</tr>
<tr>
<td>5</td>
<td>Most common combination analgesic prescribed</td>
<td>Tramadol + Paracetamol</td>
</tr>
<tr>
<td>6</td>
<td>Most common route of administration</td>
<td>Intravenous</td>
</tr>
<tr>
<td>7</td>
<td>Percentage of injections prescribed</td>
<td>78.9%</td>
</tr>
</tbody>
</table>

Above table highlights the indicators assessed [Table/Fig-5]. Among all the analgesics prescribed, tramadol was the only drug to be prescribed as generic in 4.83% of all analgesics prescribed. Most of the analgesics prescribed comply with that mentioned in the NLEM. The NSAIDs were paracetamol, ibuprofen and diclofenac. Tramadol was the drug which represented the opioid group. 78.9% analgesics were administered via parenteral route. The average number of analgesics was 1.39 per prescription and 81.94% complied with those from NLEM.

The most common procedures were general surgical procedures like appendectomy (14.32%) and inguinal hernia repair (9.70%). Others are depicted in [Table/Fig-6]. The procedures from the department of Gynaecology & Obstetrics were Caesarean section (10.01%), breast abscess drainage (6.0%), perineal tear repair (2.0%) and ovarian cyst removal (2.0%). Department of Orthopedics reported fracture repair (2.1%), joint effusion (2.77%), and arthroscopy (2.0%). Cataract surgery was the frequently performed (2%) procedure in Ophthalmology.

Route of administration

<table>
<thead>
<tr>
<th>Frequency (percentage)</th>
<th>Frequency (number of patients)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intravenous</td>
<td>70.3</td>
</tr>
<tr>
<td>Oral</td>
<td>19.1</td>
</tr>
<tr>
<td>Intramuscular</td>
<td>8.6</td>
</tr>
<tr>
<td>Unspecified</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Route of administration could not be elicited in 2% of the records. The percentage of patients who received more than one analgesic on the first postoperative day was 36.97% and 63.2% was on a single analgesic.
of some analgesics did not comply with that specified by NLEM's like piroxicam, pentazocine and acetylsalicylic. Patients prescribed analgesics from the NLEM were 81.94%. The PDD showed that most of the drugs were on the lower limit of RDD. This may be due to the lesser muscle mass or body mass index (BMI) in the Indian population [19].

LIMITATION OF THE STUDY

Since the analgesic use was taken from the medical records, the pain assessment scores could not be implemented in our study. It was not done subjectively and therefore the correctness of the therapy remains conjectural. Moreover, this study involved a broader area including surgery and allied departments, instead of which it could have been focused on a particular specialty.

CONCLUSION

Pain assessment can be done using scales though with large subjective variability. This study is a retrospective one and throws some light regarding the prescribing trend for analgesics, the combinations used and their route of administration. Overall, it does not reveal improper drug/ drug combination use. Regular utilization studies on large population may throw light on the analgesic usage pattern, and also provide insights regarding modulation of analgesic therapy. Prescribing trends in any particular locale can get highlight which may educate new health professionals. The shortcoming was the inability to include the pain assessment methods in the study.

ACKNOWLEDGEMENT

We would like to thank Dr Shobhana Mathur, Professor in Pharmacology, Deccan College of Medical Sciences, Hyderabad for her valuable help in carrying out this study.

REFERENCES

Particulars of Contributors:

1. Professor and Head, Department of Pharmacology, Apollo Institute of Medical Sciences & Research, Hyderabad, India.
2. Assistant Professor, Department of Pharmacology, Apollo Institute of Medical Sciences & Research, Hyderabad, India.

Name, Address, E-mail ID of the Corresponding Author:

Dr. Sumana Sen,
Apollo Health City Campus, Jubilee Hills, Hyderabad, Telangana-500096, India.
E-mail: drsumana_sen@apolloimsr.edu.in

Financial or Other Competing Interests: None.

Date of Submission: Sep 04, 2014
Date of Peer Review: Nov 12, 2014
Date of Acceptance: Nov 22, 2014
Date of Publishing: Apr 01, 2015